Bound on log
Dependencies: None
\[ \forall x > 0, \frac{x-1}{x} \le \ln x \le x-1 \]
Proof
You can plot a graph of $y = \ln x$ and $y = x - 1$ to see that $\ln x \le x-1$.
Alternatively, let $f(x) = x - 1 - \ln x$. Prove that $f(x)$ attains a minimum value of $0$ at $x = 1$. Therefore, $f(x) \ge 0$, which means that $\ln x \le x-1$.
\begin{align} & \forall x \in \mathbb{R}, \ln x \le x-1 \\ &\implies \forall x \in \mathbb{R}, \ln \left(\frac{1}{x}\right) \le \frac{1}{x} - 1 \\ &\implies \forall x \in \mathbb{R}, -\ln x \le \frac{1-x}{x} \\ &\implies \forall x \in \mathbb{R}, \ln x \ge \frac{x-1}{x} \end{align}
Dependency for:
Info:
- Depth: 0
- Number of transitive dependencies: 0