Implicit equality

Dependencies:

  1. Polyhedral set and polyhedral cone

Let $P = \{x \in \mathbb{R}^n: (a_i^Tx \ge b_i, \forall i \in I) \wedge (a_i^Tx = b_i, \forall i \in E)\}$. For $i \in I$, $a_i^Tx \ge b_i$ is called an implicit equality for $P$ if $a_i^Tx = b_i$ for all $x \in P$.

Dependency for:

  1. Interior point of polyhedron
  2. Dimension of a polyhedron

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Semiring
  6. Matrix
  7. Cone
  8. Convex combination and convex hull
  9. Convex set
  10. Polyhedral set and polyhedral cone