Implicit equality

Dependencies:

  1. Polyhedral set and polyhedral cone

Let P={xRn:(aiTxbi,iI)(aiTx=bi,iE)}. For iI, aiTxbi is called an implicit equality for P if aiTx=bi for all xP.

Dependency for:

  1. Interior point of polyhedron
  2. Dimension of a polyhedron

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Semiring
  6. Matrix
  7. Cone
  8. Convex combination and convex hull
  9. Convex set
  10. Polyhedral set and polyhedral cone