Implicit equality
Dependencies:
Let $P = \{x \in \mathbb{R}^n: (a_i^Tx \ge b_i, \forall i \in I) \wedge (a_i^Tx = b_i, \forall i \in E)\}$. For $i \in I$, $a_i^Tx \ge b_i$ is called an implicit equality for $P$ if $a_i^Tx = b_i$ for all $x \in P$.
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 10