Convex function
Dependencies:
Let $V$ be a vector space over $\mathbb{R}$. Let $S \subseteq V$ be a convex set. Let $f: S \mapsto \mathbb{R}$ be a function.
Then $f$ is defined to be convex iff \[ \forall x \in S, \forall y \in S, \forall \alpha \in [0, 1], f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y) \]
Intuitively, this means that a function $f$ is convex iff the line segment joining $(x, f(x))$ and $(y, f(y))$ lies completely above the function surface.
Dependency for: None
Info:
- Depth: 6
- Number of transitive dependencies: 6