Supermodular function
Dependencies:
$f: 2^{\Omega} \to \mathbb{R}$ be a function. Then $f$ is supermodular iff it satisfies one of the following equivalent conditions:
- $\forall Y \subseteq \Omega, \forall X \subseteq Y, \forall Z \in \Omega \setminus Y,$ $f(Z \mid X) \le f(Z \mid Y)$.
- $\forall P \subseteq \Omega, \forall Q \subseteq \Omega,$ $f(P) + f(Q) \le f(P \cup Q) + f(P \cap Q)$.
Proof of equivalence of definitions
Definition 1 implies definition 2 if we let $Y = P$, $X = P \cap Q$ and $Z = Q - P$.
Definition 2 implies definition 1 if we let $P = X \cup Z$ and $Q = Y$.
Dependency for:
- A supermodular function is also a superadditive function
- A set function is additive iff it is submodular and supermodular iff it is subadditive and superadditive.
- EFX implies EF1
- EFX
- PROPx
- PROP cake division doesn't exist for supermodular valuations
Info:
- Depth: 3
- Number of transitive dependencies: 3
Transitive dependencies:
- /sets-and-relations/countable-set
- σ-algebra
- Set function