PROPx
Dependencies:
$\newcommand{\defeq}{:=}$ Let $([n], M, V, w)$ be a fair division instance for indivisible items (where each agent $i$ has entitlement $w_i$).
An allocation $A$ is said to be PROPx-fair to agent $i$ iff either $v_i(A_i) ≥ w_iv_i([m])$ or both of these conditions hold:
- $v_i(A_i \cup S) > w_iv_i([m])$ for every $S$ such that $S \subseteq M \setminus A_i$ and $v_i(S \mid A_i) > 0$.
- $v_i(A_i \setminus S) > w_iv_i([m])$ for every $S \subseteq A_i$ such that $v_i(S \mid A_i \setminus S) < 0$.
It is trivial to see that PROP implies PROPx.
Equivalent definitions in special cases:
- When all items are goods to agent $i$ and $v_i$ is submodular, $A$ is PROPx-fair to agent $i$ iff $v_i(A_i) ≥ w_iv_i([m])$ or $v_i(A_i \cup \{g\}) > w_iv_i([m])$ for every $g \in M \setminus A_i$ such that $v_i(g \mid A_i) > 0$.
- When all items are chores to agent $i$ and $d_i$ is supermodular, $A$ is PROPx-fair to agent $i$ iff $d_i(A_i) ≤ w_id_i([m])$ or $d_i(A_i \setminus \{c\}) < w_id_i([m])$ for every $c \in A_i$ such that $d_i(c \mid A_i \setminus \{c\}) > 0$.
Proof of equivalence of definitions of PROPx
Suppose all items are goods and $v_i$ is submodular. Let $A$ be an allocation and $S \subseteq M \setminus A_i$ such that $v_i(S \mid A_i) > 0$. Let $S \defeq \{g_1, \ldots, g_k\}$. Then \[ 0 < v_i(S \mid A_i) = \sum_{t=1}^k v_i(g_t \mid A_i \cup \{g_1, \ldots, g_{t-1}\}) \le \sum_{t=1}^k v_i(g_t \mid A_i). \] Hence, $v_i(g \mid A_i) > 0$ for some $g \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of PROPx.
Suppose all items are chores and $d_i$ is supermodular. Let $A$ be an allocation and $S \subseteq A_i$ such that $d_i(S \mid A_i \setminus S) > 0$. Let $S \defeq \{c_1, \ldots, c_k\}$. For $t \in \{0, \ldots, k\}$, let $S_t \defeq \{c_1, \ldots, c_t\}$. Then \begin{align} 0 &< d_i(S \mid A_i \setminus S) = d_i(A_i \setminus S_0) - d_i(A_i \setminus S_k) \\ &= \sum_{t=1}^k (d_i(A_i \setminus S_{t-1}) - d_i(A_i \setminus S_t)) \\ &= \sum_{t=1}^k d_i(c_t \mid A_i \setminus S_t) \\ &\le \sum_{t=1}^k d_i(c_t \mid A_i \setminus \{c_t\}) \end{align} Hence, $d_i(c \mid A_i \setminus \{c\}) > 0$ for some $c \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of PROPx.
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 7
Transitive dependencies:
- /sets-and-relations/countable-set
- σ-algebra
- Set function
- Fair division
- Proportional allocation
- Supermodular function
- Submodular function