Matroid: restricted rank is submodular
Dependencies:
Let $M = (S, I)$ be a matroid. Let $T \subseteq S$. Let $r_T(X) = r(X \cap T)$. $r_T(X)$ is called the $T$-restricted rank of $X$. Then $r_T$ is submodular.
Proof
We have to prove that for $X \subseteq Y \subseteq S$, $r_T(X+e) - r_T(X) \ge r_T(Y+e) - r_T(Y)$.
Case 1: $e \not\in T$
$r_T(X+e) = r((X+e) \cap T) = r(X \cap T) = r_T(X)$. Therefore, $r_T(X+e) - r_T(X) = 0$. Similarly, $r_T(Y+e) - r_T(Y) = 0$.
Case 2: $e \in T$
$r_T(X+e) = r((X+e) \cap T) = r((X \cap T) + e)$. Similarly, $r_T(Y+e) = r((Y \cap T) + e)$.
\begin{align} & r_T(X+e) - r_T(X) \\ &= r((X \cap T)+e) - r(X \cap T) \\ &\ge r((Y \cap T)+e) - r(Y \cap T) \tag{$X \cap T \subseteq Y \cap T$ and $r$ is submodular} \\ &= r_T(Y+e) - r_T(Y) \end{align}
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 12