Matroid: rank of set increment

Dependencies:

  1. Matroid: rank
  2. Matroid: basis
  3. Matroid: basis iff size is rank

Let $M = (S, I)$ be a matroid and $X \subseteq S$. Then $\forall e \in S, r(X) \le r(X + e) \le r(X) + 1$.

Proof

If $e \in X$, then $X + e = X$, so $r(X) = r(X + e)$. So let's assume $e \not\in X$.

Let $A$ be a basis of $X$. Then $A \in I$ and $A \subseteq X + e$. Therefore, $r(X) = |A| \le r(X + e)$.

Let $B$ be a basis of $X + e$. Then $B-e \in I$ and $B-e \subseteq X$, so $|B-e| \le r(X)$.

If $e \not\in B$, then $r(X+e) = |B| = |B-e| \le r(X) \le r(X) + 1$. If $e \in B$, then $r(X+e) = |B| = |B-e| + 1 \le r(X) + 1$.

Dependency for:

  1. Matroid: rank is submodular
  2. Incremental max-weight basis

Info:

Transitive dependencies:

  1. Matroid
  2. Matroid: rank
  3. Matroid: basis
  4. Matroid: basis iff size is rank