Zeros in vector space
Dependencies:
Let $V$ be a vector space over $F$. Let $a \in F$ and $\mathbf{v} \in V$.
- $0\mathbf{v} = \mathbf{0}$.
- $a\mathbf{0} = \mathbf{0}$.
- $a\mathbf{v} = \mathbf{0} \iff a = 0 \vee \mathbf{v} = \mathbf{0}$.
Proof
\[ 0\mathbf{v} = (0 + 0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v} \Rightarrow 0\mathbf{v} = \mathbf{0} \] \[ a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0} + a\mathbf{0} \Rightarrow a\mathbf{0} = \mathbf{0} \]
By the above 2 statements, $a = 0 \vee \mathbf{v} = \mathbf{0} \Rightarrow a\mathbf{v} = \mathbf{0}$.
Let $a \neq 0$. \begin{align} & a\mathbf{v} = \mathbf{0} \\ &\Rightarrow a^{-1}(a\mathbf{v}) = a^{-1}\mathbf{0} \tag{$a^{-1}$ exists because $a \neq 0$} \\ &\Rightarrow (a^{-1}a)\mathbf{v} = \mathbf{0} \tag{using scalar associativity and result 2 from above} \\ &\Rightarrow \mathbf{v} = \mathbf{0} \end{align}
Therefore, $a\mathbf{v} = \mathbf{0} \Rightarrow a = 0 \vee \mathbf{v} = \mathbf{0}$.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 4