Negation in vector space
Dependencies:
Let $V$ be a vector space over $F$. Let $a \in F$ and $\mathbf{v} \in V$.
- $-v = (-1)v$.
- $-(av) = (-a)v = a(-v)$.
Proof
\[ 0 = 0v = (1 + (-1))v = v + (-1)v \Rightarrow (-1)v = -v \] \[ 0 = 0v = (a + (-a))v = av + (-a)v \Rightarrow (-a)v = -(av) \] \[ 0 = a0 = a(v + (-v)) = av + a(-v) \Rightarrow a(-v) = -(av) \]
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 5