Negation in vector space

Dependencies:

  1. Vector Space
  2. Zeros in vector space

Let V be a vector space over F. Let aF and vV.

  1. v=(1)v.
  2. (av)=(a)v=a(v).

Proof

0=0v=(1+(1))v=v+(1)v(1)v=v 0=0v=(a+(a))v=av+(a)v(a)v=(av) 0=a0=a(v+(v))=av+a(v)a(v)=(av)

Dependency for:

  1. Condition for being a subspace

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Zeros in vector space