Affine independence (incomplete)
Dependencies:
$\newcommand{\defeq}{=}$ Let $X \defeq \{x^{(1)}, \ldots, x^{(n)}\}$ be vectors over field $F$. $X$ is affinely independent iff (the following conditions are equivalent):
- $\forall \alpha \in F^n$, if $\sum_{i=1}^n \alpha_i = 0$ and $\sum_{i=1}^n \alpha_ix^{(i)} = 0$, then $\alpha = 0$.
- $\{x^{(1)}-x^{(n)}, \ldots, x^{(n-1)} - x^{(n)}\}$ is linearly independent.
Proof of equivalence (incomplete)
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 5