PROPm
Dependencies:
$\newcommand{\defeq}{:=}$ $\newcommand{\Scal}{\mathcal{S}}$ Let $([n], M, V, w)$ be a fair division instance for indivisible items (where each agent $i$ has entitlement $w_i$).
An allocation $A$ is said to be PROPm-fair to agent $i$ iff either $v_i(A_i) ≥ w_iv_i([m])$ or both of these conditions hold:
- For $j \in [n] \setminus \{i\}$, define \[ \tau_j \defeq \begin{cases} 0 & \textrm{ if } v_i(S \mid A_i) ≤ 0 \textrm{ for all } S \subseteq A_j \\ \min(\{v_i(S \mid A_i) \mid S \subseteq A_j \textrm{ and } v_i(S \mid A_i) > 0\}) & \textrm{ otherwise} \end{cases}. \] Define $T \defeq \{\tau_j \mid j \in [n] \setminus \{i\} \textrm{ and } \tau_j > 0\}$. Then either $T = \emptyset$, or $v_i(A_i) + \max(T) > w_iv_i([m])$.
- $v_i(A_i \setminus S) > w_iv_i([m])$ for every $S \subseteq A_i$ such that $v_i(S \mid A_i \setminus S) < 0$.
It is trivial to see that PROP implies PROPm.
Equivalent definitions in special cases:
- When all items are chores to agent $i$, $A$ is PROPm-fair to agent $i$ iff it is PROPx-fair to agent $i$.
- When all items are goods to agent $i$ and $v_i$ is submodular, $A$ is PROPm-fair to agent $i$ iff $v_i(A_i) ≥ w_iv_i([m])$ or for some $j \in [n] \setminus \{i\}$, we have $v_i(A_i \cup \{g\}) > w_iv_i([m])$ for every $g \in A_j$ such that $v_i(g \mid A_i) > 0$.
Proof of equivalence of definitions of PROPm for goods
Suppose all items are goods and $v_i$ is submodular. Let $A$ be an allocation, let $j \in [n] \setminus \{i\}$, and let $S \subseteq A_j$ such that $v_i(S \mid A_i) > 0$. Let $S \defeq \{g_1, \ldots, g_k\}$. Then \[ 0 < v_i(S \mid A_i) = \sum_{t=1}^k v_i(g_t \mid A_i \cup \{g_1, \ldots, g_{t-1}\}) \le \sum_{t=1}^k v_i(g_t \mid A_i). \] Hence, $v_i(g \mid A_i) > 0$ for some $g \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of PROPm.
Dependency for: None
Info:
- Depth: 6
- Number of transitive dependencies: 8
Transitive dependencies:
- /sets-and-relations/countable-set
- σ-algebra
- Set function
- Fair division
- Proportional allocation
- Supermodular function
- Submodular function
- PROPx