Recession cone of a polyhedron

Dependencies:

  1. Cone
  2. Direction of a convex set and Recession cone
  3. Polyhedral set and polyhedral cone

Let $P = \{x: (a_i^Tx \ge b_i, \forall i \in I) \textrm{ and } (a_i^Tx = b_i, \forall i \in E)\}$ be a non-empty polyhedron. Let $Q$ be the set of all directions of $P$. Let $R = \{x: (a_i^Tx \ge 0, \forall i \in I) \textrm{ and } (a_i^Tx = 0, \forall i \in E)\}$. Then $Q = R$. $Q$ is called the recession cone of $P$, since $R$ is a cone.

Furthermore, $d \in \mathbb{R}^n$ is a direction of $P$ iff for some $x \in P$, we have $\{x + \lambda d: \lambda \ge 0\} \subseteq P$.

Proof that $R \subseteq Q$

Let $d \in R$. Let $x \in P$. Let $\lambda \ge 0$. Then $a_i^T(x + \lambda d) = a_i^Tx + \lambda a_i^Td = a_i^Tx$. Hence, $x + \lambda d \in P$ for all $x \in P$ and $\lambda \ge 0$. Hence, $d \in Q$.

Proof that $Q \subseteq R$ and condition for direction

Let $x \in P$ and $\{x + \lambda d: \lambda \ge 0\} \subseteq P$.

Let $i \in E$. Then $\forall \lambda \ge 0, a_i^T(x + \lambda d) = b_i$, so $\forall \lambda \ge 0, \lambda a_i^Td = b_i - a_i^Tx = 0$. Hence, $a_i^Td = 0$.

Let $i \in I$. Then $\forall \lambda \ge 0, a_i^T(x + \lambda d) \ge b_i$, so $\forall \lambda \ge 0, \lambda a_i^Td \ge b_i - a_i^Tx$. Suppose $a_i^Td < 0$. Then $\forall \lambda \ge 0, \lambda \le (b_i - a_i^Tx)/(a_i^Td)$. This is a contradiction. Hence, $a_i^Td \ge 0$.

Hence, $d \in R$. Hence, $Q \subseteq R$.

Dependency for:

  1. Bounded section of pointed cone
  2. Representing point in full-rank polyhedron

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Semiring
  6. Matrix
  7. Cone
  8. Convex combination and convex hull
  9. Convex set
  10. Polyhedral set and polyhedral cone
  11. Direction of a convex set and Recession cone