Recession cone of a polyhedron
Dependencies:
Let $P = \{x: (a_i^Tx \ge b_i, \forall i \in I) \textrm{ and } (a_i^Tx = b_i, \forall i \in E)\}$ be a non-empty polyhedron. Let $Q$ be the set of all directions of $P$. Let $R = \{x: (a_i^Tx \ge 0, \forall i \in I) \textrm{ and } (a_i^Tx = 0, \forall i \in E)\}$. Then $Q = R$. $Q$ is called the recession cone of $P$, since $R$ is a cone.
Furthermore, $d \in \mathbb{R}^n$ is a direction of $P$ iff for some $x \in P$, we have $\{x + \lambda d: \lambda \ge 0\} \subseteq P$.
Proof that $R \subseteq Q$
Let $d \in R$. Let $x \in P$. Let $\lambda \ge 0$. Then $a_i^T(x + \lambda d) = a_i^Tx + \lambda a_i^Td = a_i^Tx$. Hence, $x + \lambda d \in P$ for all $x \in P$ and $\lambda \ge 0$. Hence, $d \in Q$.
Proof that $Q \subseteq R$ and condition for direction
Let $x \in P$ and $\{x + \lambda d: \lambda \ge 0\} \subseteq P$.
Let $i \in E$. Then $\forall \lambda \ge 0, a_i^T(x + \lambda d) = b_i$, so $\forall \lambda \ge 0, \lambda a_i^Td = b_i - a_i^Tx = 0$. Hence, $a_i^Td = 0$.
Let $i \in I$. Then $\forall \lambda \ge 0, a_i^T(x + \lambda d) \ge b_i$, so $\forall \lambda \ge 0, \lambda a_i^Td \ge b_i - a_i^Tx$. Suppose $a_i^Td < 0$. Then $\forall \lambda \ge 0, \lambda \le (b_i - a_i^Tx)/(a_i^Td)$. This is a contradiction. Hence, $a_i^Td \ge 0$.
Hence, $d \in R$. Hence, $Q \subseteq R$.
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 11