Finitely generated set is polyhedron
Dependencies:
- Polyhedral set and polyhedral cone
- Fourier-Motzkin Elimination
- Convex hull of a finite number of points in Euclidean space is bounded
$\newcommand{\defeq}{=}$ $\newcommand{\xhat}{\widehat{x}}$ Let $\{x^{(i)} \in \mathbb{R}^n: 1 \le i \le p\}$ and $\{d^{(j)} \in \mathbb{R}^n - \{0\}: 1 \le j \le q\}$ be $p+q$ vectors ($p$ and $q$ are finite). Let \[ P \defeq \left\{\sum_{i=1}^p \lambda_i x^{(i)} + \sum_{j=1}^q \mu_j d^{(j)}: \begin{array}{l} \lambda \in \mathbb{R}_{\ge 0}^p, \mu \in \mathbb{R}_{\ge 0}^q, \\ \sum_{i=1}^p \lambda_i = 1 \end{array} \right\}. \] Then $P$ is a polyhedron.
Furthermore, $P$ is a polytope iff $q = 0$. $P$ is a polyhedral cone if $x^{(i)} = 0$ for all $i$.
Proof that $P$ is a polyhedron
Let \[ Q \defeq \left\{(z, \lambda, \mu): \begin{array}{l} \lambda \in \mathbb{R}_{\ge 0}^p, \mu \in \mathbb{R}_{\ge 0}^q, \\ \sum_{i=1}^p \lambda_i = 1, \\ z = \sum_{i=1}^p \lambda_i x^{(i)} + \sum_{j=1}^q \mu_j d^{(j)} \end{array} \right\}. \]
By applying Fourier-Motzkin Elimination $p+q$ times to $Q$, we get $P$. Hence, $P$ is a polyhedron.
Proof that $P$ is a polytope iff $q = 0$.
If $q \neq 0$, then $x^{(1)} + \alpha d^{(1)} \in P$ for all $\alpha \in \mathbb{R}_{\ge 0}$. By picking a sufficiently large $\alpha$, we can make $\|x^{(1)} + \alpha d^{(1)}\|$ arbitrarily large. Hence, $P$ is not bounded.
If $q = 0$, then $P$ is the convex hull of $\{x^{(i)}: 1 \le i \le p\}$, and so it is bounded.
Proof that $P$ is a cone if $x^{(i)} = 0$ for all $i$
If $x^{(i)} = 0$ for all $i$, then $P = \{\sum_{j=1}^q \mu_jd^{(j)}: \mu \in \mathbb{R}^q_{\ge 0}\}$. Suppose $\xhat \in P$. Then $\exists \mu \in \mathbb{R}_{\ge 0}^q$ such that $\xhat = \sum_{i=1}^q \mu_jd^{(j)}$. Let $\alpha \in \mathbb{R}_{\ge 0}$. Then $\alpha\xhat = \sum_{j=1}^d (\alpha\mu_j)d^{(j)}$. Hence, $\alpha\xhat \in P$. Hence, $P$ is a cone.
Dependency for: None
Info:
- Depth: 8
- Number of transitive dependencies: 12