Finitely generated set is polyhedron

Dependencies:

  1. Polyhedral set and polyhedral cone
  2. Fourier-Motzkin Elimination
  3. Convex hull of a finite number of points in Euclidean space is bounded

Let $\{x^{(i)} \in \mathbb{R}^n: 1 \le i \le p\}$ and $\{d^{(j)} \in \mathbb{R}^n - \{0\}: 1 \le j \le q\}$ be $p+q$ vectors ($p$ and $q$ are finite). Let \[ P \defeq \left\{\sum_{i=1}^p \lambda_i x^{(i)} + \sum_{j=1}^q \mu_j d^{(j)}: \begin{array}{l} \lambda \in \mathbb{R}_{\ge 0}^p, \mu \in \mathbb{R}_{\ge 0}^q, \\ \sum_{i=1}^p \lambda_i = 1 \end{array} \right\}. \] Then $P$ is a polyhedron.

Furthermore, $P$ is a polytope iff $q = 0$. $P$ is a polyhedral cone if $x^{(i)} = 0$ for all $i$.

Proof that $P$ is a polyhedron

Let \[ Q \defeq \left\{(z, \lambda, \mu): \begin{array}{l} \lambda \in \mathbb{R}_{\ge 0}^p, \mu \in \mathbb{R}_{\ge 0}^q, \\ \sum_{i=1}^p \lambda_i = 1, \\ z = \sum_{i=1}^p \lambda_i x^{(i)} + \sum_{j=1}^q \mu_j d^{(j)} \end{array} \right\}. \]

By applying Fourier-Motzkin Elimination $p+q$ times to $Q$, we get $P$. Hence, $P$ is a polyhedron.

Proof that $P$ is a polytope iff $q = 0$.

If $q \neq 0$, then $x^{(1)} + \alpha d^{(1)} \in P$ for all $\alpha \in \mathbb{R}_{\ge 0}$. By picking a sufficiently large $\alpha$, we can make $\|x^{(1)} + \alpha d^{(1)}\|$ arbitrarily large. Hence, $P$ is not bounded.

If $q = 0$, then $P$ is the convex hull of $\{x^{(i)}: 1 \le i \le p\}$, and so it is bounded.

Proof that $P$ is a cone if $x^{(i)} = 0$ for all $i$

If $x^{(i)} = 0$ for all $i$, then $P = \{\sum_{j=1}^q \mu_jd^{(j)}: \mu \in \mathbb{R}^q_{\ge 0}\}$. Suppose $\xhat \in P$. Then $\exists \mu \in \mathbb{R}_{\ge 0}^q$ such that $\xhat = \sum_{i=1}^q \mu_jd^{(j)}$. Let $\alpha \in \mathbb{R}_{\ge 0}$. Then $\alpha\xhat = \sum_{j=1}^d (\alpha\mu_j)d^{(j)}$. Hence, $\alpha\xhat \in P$. Hence, $P$ is a cone.

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Semiring
  6. Matrix
  7. Cone
  8. Convex combination and convex hull
  9. Convex set
  10. Polyhedral set and polyhedral cone
  11. Fourier-Motzkin Elimination
  12. Convex hull of a finite number of points in Euclidean space is bounded