Double directions of a polyhedron (incomplete)
Dependencies:
Let $P = \{x \in \mathbb{R}^n: (a_i^Tx \ge b_i, \forall i \in I) \textrm{ and } (a_i^Tx = b_i, \forall i \in E)\}$ be a non-empty polyhedron. Let $D = \{x \in \mathbb{R}^n: (a_i^Tx = 0, \forall i \in I \cup E)\}$. Then the following are equivalent for any $d \in \mathbb{R}^n$:
- $\forall x \in P$, $\forall \lambda \in \mathbb{R}$, $x + \lambda d \in P$ (i.e., $d$ is a double direction of $P$).
- $\exists x \in P$, $\forall \lambda \in \mathbb{R}$, $x + \lambda d \in P$.
- $d \in D$.
It's easy to see that $(1) \implies (2)$. I will prove $(2) \implies (3)$ and $(3) \implies (1)$.
Proof (missing)
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 11