Residual of submodular function is submodular
Dependencies:
- Set function
- Submodular function
- /sets-and-relations/de-morgan-laws
Let $f$ be a real-valued submodular set function over $\Omega$. Let $S \subseteq \Omega$ and define the function $g$ over $\Omega \setminus S$ as $g(X) = f(X \mid S) = f(X \cup S) - f(S)$. Then $g$ is also submodular.
Proof
Let $P, Q \subseteq \Omega \setminus S$. Then \begin{align} & g(P) + g(Q) \\ &= f(P \cup S) + f(Q \cup S) - 2f(S) \\ &≥ f((P \cup S) \cup (Q \cup S)) + f((P \cup S) \cap (Q \cap S)) - 2f(S) \\ &= f((P \cup Q) \cup S) + f((P \cap Q) \cup S) - 2f(S) \tag{by De Morgan's law} \\ &= g(P \cup Q) + g(P \cap Q). \end{align} Hence, $g$ is submodular.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 5
Transitive dependencies:
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- σ-algebra
- Set function
- Submodular function