Probability: limit of CDF

Dependencies: (incomplete)

  1. Random variable

Let $X$ be a real random variable. Let $F_X$ be the CDF of $X$. Then \begin{align} \lim_{x \rightarrow -\infty} F_X(x) &= 0 & \lim_{x \rightarrow \infty} F_X(x) &= 1 \end{align}

Proof

See lemma 2.1.6 (a), page 28, [prob-and-rand-proc-book].

prob-and-rand-proc-book
Geoffrey Grimmett and David Stirzanker
Probability and Random Processes (Third Edition)
Oxford University Press

Dependency for: None

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. σ-algebra
  5. Generated σ-algebra
  6. Borel algebra
  7. Measurable function
  8. Generators of the real Borel algebra (incomplete)
  9. Measure
  10. σ-algebra is closed under countable intersections
  11. Probability
  12. Random variable