Poisson distribution
Dependencies:
Let $X$ be a random variable whose support is $\mathbb{Z}_{\ge 0}$. Then $X$ is said to be Poisson-distributed with parameter $\lambda$ (where $\lambda > 0$) iff \[ \Pr(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}. \] We use $X \sim \operatorname{Poisson}(\lambda)$ to denote that $X$ is Poisson-distributed with parameter $\lambda$.
Proof that $X$ is a probability distribution
$\Pr(X = k) \ge 0$ for all $k$. \[ \sum_{k=0}^{\infty} \Pr(X = k) = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1. \]
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 13
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Probability
- Random variable
- Series expansion for e^x (incomplete)