q(x)F[x] is in p(x)F[x] iff p(x) divides q(x)
Dependencies:
Let $R$ be a ring and $p(x), q(x) \in R[x]$.
Then $p(x) \mid q(x) \iff q(x)F[x] \subseteq p(x)F[x]$.
Proof
\begin{align} & p(x) \mid q(x) \\ &\Rightarrow \exists r(x) \in F[x], q(x) = p(x)r(x) \\ &\Rightarrow \forall f(x) \in F[x], q(x)f(x) = p(x)r(x)f(x) \in p(x)F[x] \\ &\Rightarrow q(x)F[x] \subseteq p(x)F[x] \end{align}
\begin{align} & q(x)F[x] \subseteq p(x)F[x] \\ &\Rightarrow q(x) \in p(x)F[x] \\ &\Rightarrow \exists r(x) \in F[x], q(x) = p(x)r(x) \\ &\Rightarrow p(x) \mid q(x) \end{align}
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 4