1BP: ⌈size(I)⌉ ≤ opt(I)

Dependencies:

  1. Bin packing and Knapsack

Let $I$ be a 1BP instance. Then $\ceil{\Size(I)} \le \opt(I)$.

Proof

Let $m = \opt(I)$. Let $B_i$ be the items in the $i^{\textrm{th}}$ bin in the optimal packing. Then $\Size(B_i) \le 1$ and \[ \ceil{\Size(I)} = \ceil{\sum_{i=1}^m \Size(B_i)} \le \ceil{\sum_{i=1}^m 1} = m = \opt(I). \]

Dependency for:

  1. 1BP: APTAS
  2. 1BP: NextFit(S) ≤ ⌈2size(S)⌉
  3. 1BP: Karmarkar-Karp algorithm (broken)
  4. 1BP: NextFit(I) ≤ ⌈size(I)/(1-ε)⌉ for ε-small items

Info:

Transitive dependencies:

  1. Bin packing and Knapsack