APS = MMS for n=2
Dependencies:
- Fair division
- AnyPrice share
- Maximin share allocations
- MMS is largest bundle value at most PROP when n=2
- APS implies pessShare
- PROP implies APS
$\newcommand{\defeq}{:=}$ $\newcommand{\argmax}{\mathop{\mathrm{argmax}}}$ $\newcommand{\MMS}{\mathrm{MMS}}$ $\newcommand{\WMMS}{\mathrm{WMMS}}$ $\newcommand{\APS}{\mathrm{APS}}$ Let $([2], [m], V, w)$ be a fair division instance with indivisible items and each agent $i$ has entitlement $w_i$. If $v_k$ is additive for some agent $k$, then $\APS_k ≤ \WMMS_k$. If entitlements are equal, then $\APS_k = \MMS_k$.
Proof
Let \[ \beta_k \defeq \max(\{v_k(S)/w_i: S \subseteq [m], i \in [2], v_k(S) ≤ w_iv_k([m])\}). \] Then $\WMMS_k = w_k\beta_k$. Let $p^*$ be the optimal APS price vector. Let \[ S^* \defeq \argmax_{S \subseteq [m]: p^*(S) ≤ w_kp^*([m])} v_k(S). \] Then $\APS_k = v_k(S^*)$. Since $\APS_k ≤ w_kv_k([m])$, we get $\APS_k/w_k ≤ \beta_k = \WMMS_k/w_k$. Hence, $\APS_k ≤ \WMMS_k$.
When entitlements are equal, $\APS_k ≥ \mathrm{pessShare}_k = \MMS_k$.
Dependency for: None
Info:
- Depth: 6
- Number of transitive dependencies: 17
Transitive dependencies:
- /sets-and-relations/countable-set
- /analysis/sup-inf
- σ-algebra
- Set function
- Fair division
- Proportional allocation
- Maximin share of a set function
- Maximin share allocations
- Additive set function
- MMS is largest bundle value at most PROP when n=2
- Optimization: Dual and Lagrangian
- Dual of a linear program
- Linear programming: strong duality (incomplete)
- AnyPrice share
- PROP implies APS
- Bound on k extreme values
- APS implies pessShare