Binomial coefficient: Sum 1
Dependencies:
Let $n$ and $k$ be non-negative integers. \[ \sum_{i=k}^n \binom{i}{k} \binom{n}{i} = \binom{n}{k} 2^{n-k} \]
Proof
\begin{align} & \sum_{i=k}^n \binom{i}{k} \binom{n}{i} \\ &= \sum_{i=k}^n \binom{n}{k} \binom{n-k}{i-k} \tag{bulk decrement identity} \\ &= \binom{n}{k} \sum_{j=0}^{n-k} \binom{n-k}{j} \\ &= \binom{n}{k} 2^{n-k} \end{align}
Dependency for: None
Info:
- Depth: 3
- Number of transitive dependencies: 6