Binomial coefficient: Bulk decrement
Dependencies:
\[ \binom{n}{i} = \frac{\binom{n}{k}}{\binom{i}{k}} \binom{n-k}{i-k} \]
Proof
Repeatedly apply the decrement identity to get
\[ \binom{n}{i} = \frac{n(n-1)\ldots(n-k+1)}{i(i-1)\ldots(i-k+1)} \binom{n-k}{i-k} \]
\begin{align} n(n-1)\ldots(n-k+1) &= k!\binom{n}{k} & i(i-1)\ldots(i-k+1) &= k!\binom{i}{k} \end{align}
Dependency for:
Info:
- Depth: 2
- Number of transitive dependencies: 2