Bound on harmonic sum
Dependencies: (incomplete)
Let $H(n) = \sum_{i=1}^n \frac{1}{i}$. Then \[ \ln n + \gamma \le H(n) \le \ln(n+1) + \gamma \le \ln n + \gamma + \frac{1}{n} \]
Here $\gamma \approx 0.577216$ is the Euler-Mascheroni constant.
Proof
A proof of $\ln n + \gamma \le H(n) \le \ln(n+1) + \gamma$ can be found in a StackExchange answer.
Also, $\ln(n+1) - \ln n \le \ln \left( 1 + \frac{1}{n} \right) \le \frac{1}{n}$. Therefore, $\ln(n+1) \le \ln(n) + \frac{1}{n}$.
Dependency for: None
Info:
- Depth: 1
- Number of transitive dependencies: 1