Harmonic bound for fraction
Dependencies: None
Let $a$ and $b$ be integers such that $0 \le a \le b$ and $b \neq 0$. Then \[ H(a+b-1) - H(b-1) \le \frac{a}{b} \le H(b) - H(b-a) \]
Here $H(n) = \sum_{i=1}^n \frac{1}{i}$.
Proof
\begin{align} & \forall 0 \le i \le a-1, \frac{1}{b+i} \le \frac{1}{b} \le \frac{1}{b-i} \\ &\implies \sum_{i=0}^{a-1} \frac{1}{b+i} \le \sum_{i=0}^{a-1} \frac{1}{b} \le \sum_{i=0}^{a-1} \frac{1}{b-i} \\ &\implies H(a+b-1) - H(b-1) \le \frac{a}{b} \le H(b) - H(b-a) \end{align}
Dependency for:
Info:
- Depth: 0
- Number of transitive dependencies: 0