For 0<k≤n, (nk)k≤(nk)≤(nek)k
n−ik−i=(n−k)+(k−i)k−i=1+n−kk−i≥1+n−kk=nk (nk)=∏i=0k−1n−ik−i≥∏i=0k−1nk=(nk)k
By Stirling's approximation, ekk!≥2πkkk≥kk (nk)≤nkk!≤(nek)k