(-a)b = a(-b) = -ab

Dependencies:

  1. Ring
  2. 0x = 0 = x0

Let a,b belong to ring R. Then (a)b=a(b)=ab.

Proof

ab+(a)b(distributivity)=(a+(a))b=0b(0x=0xR)=0

Therefore, (a)b=(ab).

ab+a(b)(distributivity)=a(b+(b))=a0(x0=0xR)=0

Therefore, a(b)=(ab).

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. 0x = 0 = x0