(-a)b = a(-b) = -ab
Dependencies:
Let $a, b$ belong to ring $R$. Then $(-a)b = a(-b) = -ab$.
Proof
\begin{align} & ab + (-a)b \\ &= (a + (-a))b \tag{distributivity} \\ &= 0b \\ &= 0 \tag{$0x = 0 \forall x \in R$} \end{align}
Therefore, $(-a)b = -(ab)$.
\begin{align} & ab + a(-b) \\ &= a(b + (-b)) \tag{distributivity} \\ &= a0 \\ &= 0 \tag{$x0 = 0 \forall x \in R$} \end{align}
Therefore, $a(-b) = -(ab)$.
Dependency for: None
Info:
- Depth: 3
- Number of transitive dependencies: 3