Homomorphic mapping of subgroup of domain is subgroup of codomain
Dependencies:
- Subgroup
- Condition for a subset to be a subgroup
- Homomorphism on groups
- Mapping of power is power of mapping
Let $H_1$ and $H_2$ be subgroups of $G_1$ and $G_2$. Let $\phi$ be a homomorphism from $G_1$ to $G_2$.
Then
- $\phi(H_1)$ is a subgroup of $G_2$.
- $\phi^{-1}(H_2) = \{g_1: \phi(g_1) \in H_2\}$ is a subgroup of $G_1$.
Proof of part 1
$\phi(H_1)$ is a non-empty subset of $G_2$.
Let $\phi(a), \phi(b) \in \phi(H_1)$, where $a, b \in H_1$. Then \[ \phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \in \phi(H_1) \]
Therefore, $H_1$ is a subgroup of $G_2$.
Proof of part 2
Since $H_2$ is non-empty, $\phi^{-1}(H_2)$ is a non-empty subset of $G_1$.
\begin{align} & a, b \in \phi^{-1}(H_2) \\ &\Rightarrow \phi(a), \phi(b) \in H_2 \\ &\Rightarrow \phi(a)\phi(b)^{-1} \in H_2 \\ &\Rightarrow \phi(a)\phi(b^{-1}) \in H_2 \\ &\Rightarrow \phi(ab^{-1}) \in H_2 \\ &\Rightarrow ab^{-1} \in \phi^{-1}(H_2) \end{align}
Therefore, $\phi^{-1}(H_2)$ is a subgroup of $G_1$.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 8