Order of cyclic subgroup is order of generator
Dependencies:
Let $G$ be a finite group and $g \in G$. Then $|\langle g \rangle| = \operatorname{order}(g)$.
Proof
Let $k = \operatorname{order}(g)$. Therefore, $k \ge 1$.
Case 1: $k = \infty$
Order of an element of a finite group is finite. Therefore, $|\langle g \rangle|$ is finite implies $k$ is finite. The contrapositive is that $k = \infty \implies |\langle g \rangle| = \infty$. Therefore, $|\langle g \rangle| = k$.
Case 2: $k$ is finite
Let $H = \{g^0, g^1, \ldots, g^{k-1}\}$. Therefore, $|H| = k$ and $H \subseteq \langle g \rangle$.
Let $i \in \mathbb{Z}$. By the integer division theorem, $\exists q \exists r$ such that $i = qk + r$ where $0 \le r < k$. \[ g^i = g^{qk+r} = (g^{k})^q * g^r = g^r \in H \]
Therefore, $\langle g \rangle \subseteq H \implies \langle g \rangle = H$. Therefore, $|\langle g \rangle| = k$.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 8