Two cosets are either identical or disjoint
Dependencies:
Two cosets are either identical or disjoint.
Proof
\begin{align} & g_1H \cap g_2H \neq \phi \\ &\Rightarrow \exists h_1 \in H, \exists h_2 \in H, g_1h_1 = g_2h_2 \\ &\Rightarrow \exists h_1 \in H, \exists h_2 \in H, g_2^{-1}g_1 = h_2h_1^{-1} \\ &\Rightarrow g_2^{-1}g_1 \in H \\ &\Rightarrow g_2^{-1}g_1H = H \\ &\Rightarrow g_1H = g_2H \end{align}
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 4