Leximin partition of a set function
Dependencies:
$\newcommand{\defeq}{:=}$ $\newcommand{\Fcal}{\mathcal{F}}$ $\newcommand{\MMS}{\operatorname{MMS}}$ $\newcommand{\sorted}{\operatorname{sorted}}$ $\DeclareMathOperator*{\argmax}{argmax}$ Let $\Omega$ be a finite set and $\Fcal \subseteq 2^{\Omega}$. Let $f: \Fcal \to \mathbb{R}$ be a function.
For any set $S \subseteq \Omega$, let $\Pi_n(S)$ denote the set of all $n$-partitions of $S$, i.e., all (unordered) tuples of the form $A = (A_1, A_2, \ldots, A_n)$ such that $A_i \in \Fcal$ for all $i$, $A_i \cap A_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^n A_i = S$.
For any non-negative integer $k$, let $[k] \defeq \{1, 2, \ldots, k\}$. For any sequence $X = (x_i)_{i=1}^n$ of real numbers, define $\sorted(X)$ to be a permutation of $X$ where entries occur in non-decreasing order. For any two sequences $X = (x_i)_{i=1}^n$ and $Y = (y_i)_{i=1}^n$, we say that $X \le Y$ if $\exists i \in [n]$ such that $x_i \le y_i$ and $x_j = y_j$ for all $j \in [i-1]$.
We say that $P \in \Pi_n(\Omega)$ is a leximin partition of $f$ if \[ P \in \argmax_{X \in \Pi_n(\Omega)} \sorted\left((f(X_j))_{j=1}^n\right). \]
We generally assume $\Fcal \defeq 2^{\Omega}$ unless stated otherwise.
It is easy to see that if $P$ is a leximin partition of $f$, then $\min_{j=1}^n f(P_j) = \MMS_f^n(\Omega)$.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 5
Transitive dependencies:
- /sets-and-relations/countable-set
- /analysis/sup-inf
- σ-algebra
- Set function
- Maximin share of a set function