2D SP: NFDH(I) < 2rvol(I) + hmax

Dependencies:

  1. Geometric packing problems (BP, KS, SP) and rvol
  2. NFDH algorithm

Let $I$ be a 2D strip packing instance. Let $\NFDH(I)$ be the height of the packing produced by the NFDH algorithm and let $h_{\max}$ be the maximum height of an item in $I$. Then \[ \NFDH(I) < 2\rvol(I) + h_{\max} \]

Since $\rvol(I)$ is a lower bound on optimal strip packing height, NFDH is an asymptotic 2-approx strip packing algorithm.

Proof

Since the first item in $V_{i+1}$ didn't fit in $V_i$, $W_i + F_{i+1} > W$. \[ A_i + A_{i+1} \ge W_iH_{i+1} + F_{i+1}H_{i+1} > WH_{i+1} \]

\begin{align} 2\sum_{i=1}^p A_i &= A_1 + \sum_{i=1}^{p-1} (A_i + A_{i+1}) + A_p \\ &> \sum_{i=1}^{p-1} WH_{i+1} = W(H - h_{\max}) \end{align} \[ \rvol(I) = \frac{1}{W} \sum_{i=1}^p A_i > \frac{H - h_{\max}}{2} \implies H < 2\rvol(I) + h_{\max} \]

Dependency for:

  1. 2D BP: NFDH for items of small height
  2. 2D BP: NFDH(I) ≤ 4⌈rvol(I)⌉ + 1

Info:

Transitive dependencies:

  1. Bin packing and Knapsack
  2. Geometric packing problems (BP, KS, SP) and rvol
  3. NFDH algorithm