2D SP: NFDH(I) < 2rvol(I) + hmax
Dependencies:
$\newcommand{\rvol}{\operatorname{rvol}}$ $\newcommand{\NFDH}{\operatorname{NFDH}}$ $\newcommand{\Th}{^{\textrm{th}}}$ Let $I$ be a 2D strip packing instance. Let $\NFDH(I)$ be the height of the packing produced by the NFDH algorithm and let $h_{\max}$ be the maximum height of an item in $I$. Then \[ \NFDH(I) < 2\rvol(I) + h_{\max} \]
Since $\rvol(I)$ is a lower bound on optimal strip packing height, NFDH is an asymptotic 2-approx strip packing algorithm.
Proof
- Let there be $p$ shelves in the output of NFDH. Let $V_i$ be the set of items in the $i\Th$ shelf.
- Let $W$ be the width of the strip.
- Let $W_i$ be the sum of widths of items in $V_i$.
- Let $A_i$ be the sum of areas of items in $V_i$.
- Let $F_i$ and $H_i$ be the width and height of the first item in $V_i$.
- Let $H$ be the sum of heights of all shelves.
Since the first item in $V_{i+1}$ didn't fit in $V_i$, $W_i + F_{i+1} > W$. \[ A_i + A_{i+1} \ge W_iH_{i+1} + F_{i+1}H_{i+1} > WH_{i+1} \]
\begin{align} 2\sum_{i=1}^p A_i &= A_1 + \sum_{i=1}^{p-1} (A_i + A_{i+1}) + A_p \\ &> \sum_{i=1}^{p-1} WH_{i+1} = W(H - h_{\max}) \end{align} \[ \rvol(I) = \frac{1}{W} \sum_{i=1}^p A_i > \frac{H - h_{\max}}{2} \implies H < 2\rvol(I) + h_{\max} \]
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 3