2D SP: NFDH(I) < a(I)/(W-ε) + hmax for ε-small items
Dependencies:
$\newcommand{\eps}{\varepsilon}$ $\newcommand{\NFDH}{\operatorname{NFDH}}$ $\newcommand{\Th}{^{\textrm{th}}}$ Let $I$ be a 2D strip packing instance. Let the strip have width $W$. Let $H = \NFDH(I)$ be the height of the packing produced by the NFDH algorithm. Let $h_{\max}$ be the maximum height of any item in $I$ and let $\eps$ be the maximum width of any item. Then \[ \NFDH(I) < a(I)/(W-\eps) + h_{\max}. \]
Since $a(I)/W$ is a lower bound on optimal strip packing height, NFDH is an asymptotic $(1-\eps/W)^{-1}$-approx strip packing algorithm.
Proof
- Let there be $p$ shelves in the output of NFDH. Let $V_i$ be the set of items in the $i\Th$ shelf.
- Let $H_i$ be the height of the first item in $V_i$.
- Let $W_i$ be the sum of widths of items in $V_i$.
- Let $A_i$ be the sum of areas of items in $V_i$.
For $i < p$, we have $W_i > W - \eps$ and $A_i \ge W_iH_{i+1} > (W - \eps)H_{i+1}$. Hence, \begin{align} & a(I) > \sum_{i=1}^{p-1} A_i \ge \sum_{i=1}^{p-1} (W-\eps)H_{i+1} = (W-\eps)(H - h_{\max}). \\ &\implies \NFDH(I) = H \le a(I)/(W-\eps) + h_{\max}. \end{align}
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 3