Optimization: weak duality
Dependencies:
Consider the optimization problem $P$: \[ \min_{x \in \mathbb{R}^d} f(x) \textrm{ where } \forall i \in I, c_i(x) \ge 0 \wedge \forall j \in J, h_j(x) = 0 \] The corresponding Lagrangian is \[ L(x, \lambda, \mu) = f(x) - \lambda^Tc(x) - \mu^Th(x) \] Let $D$ be the dual of $P$: \[ \max_{\lambda, \mu} g(\lambda, \mu) \textrm{ where } g(\lambda, \mu) \neq -\infty \wedge \lambda \ge 0 \] where \[ g(\lambda, \mu) = \min_{x \in \mathbb{R}^d} L(x, \lambda, \mu) \]
Let $x_0$ be a feasible solution to $P$ and $(\lambda_0, \mu_0)$ be feasible solution to $D$. Then \[ g(\lambda_0, \mu_0) \le L(x_0, \lambda_0, \mu_0) \le f(x_0) \]
Proof
\begin{align} & g(\lambda_0, \mu_0) \\ &= \min_{x \in \mathbb{R}^d} L(x, \lambda_0, \mu_0) \\ &\le L(x_0, \lambda_0, \mu_0) \\ &= f(x_0) - \lambda_0^Tc(x_0) - \mu^Th(x_0) \\ &\le f(x_0) \tag{$\lambda_0 \ge 0 \wedge c(x_0) \ge 0 \wedge h(x_0) = 0$ by feasibility} \end{align}
Dependency for:
Info:
- Depth: 1
- Number of transitive dependencies: 1