min linear over sum=1 constraint

Dependencies: None

Let $a_1, a_2, \ldots, a_n$ be real numbers. Let $a_k \le a_i$ for all $i$. The optimization program \[ \min_{x \in \mathbb{R}^n} \sum_{i=1}^n a_ix_i \textrm{ where } \sum_{i=1}^n x_i = 1 \textrm{ and } x_i \ge 0 \quad \forall i \] has $x^*$ as an optimal solution, where \[ x_i^* = \begin{cases}1 & \textrm{ if } i = k \\ 0 & \textrm{ otherwise}\end{cases}, \] and thus the optimal value is $a_k$.

Similarly, if $a_r \ge a_i$ for all $i$, then the optimal solution to the maximization problem is where the $r^{\textrm{th}}$ coordinate is 1 and all other coordinates are 0.

Proof

Let $\xhat$ be a feasible solution to the optimization program. Then $\sum_{i=1}^n \xhat_i = 1$ and $\xhat_i \ge 0$ for all $i$.

\begin{align} & \sum_{i=1}^n a_i\xhat_i - \sum_{i=1}^n a_ix^*_i \\ &= \sum_{i=1}^n a_i\xhat_i - a_k \\ &= \sum_{i=1}^n a_i\xhat_i - a_k \left(\sum_{i=1}^n \xhat_i\right) \\ &= \sum_{i=1}^n (a_i - a_k)\xhat_i \\ &\ge 0. \end{align} Hence, $\sum_{i=1}^n a_i^Tx^*_i \le \sum_{i=1}^n a_i^T\xhat_i$. Hence, $x^*$ is an optimal solution.

Dependency for:

  1. LP is optimized at BFS

Info:

Transitive dependencies: None