min linear over sum=1 constraint

Dependencies: None

Let a1,a2,,an be real numbers. Let akai for all i. The optimization program minxRni=1naixi where i=1nxi=1 and xi0i has x as an optimal solution, where xi={1 if i=k0 otherwise, and thus the optimal value is ak.

Similarly, if arai for all i, then the optimal solution to the maximization problem is where the rth coordinate is 1 and all other coordinates are 0.

Proof

Let x^ be a feasible solution to the optimization program. Then i=1nx^i=1 and x^i0 for all i.

i=1naix^ii=1naixi=i=1naix^iak=i=1naix^iak(i=1nx^i)=i=1n(aiak)x^i0. Hence, i=1naiTxii=1naiTx^i. Hence, x is an optimal solution.

Dependency for:

  1. LP is optimized at BFS

Info:

Transitive dependencies: None