Minimize maximum coordinate over hyperplane

Dependencies: None

Let $a \in \mathbb{R}^d_{\ge 0} - \{0\}$, $b \in \mathbb{R}$, and for any $x \in \mathbb{R}^d, \max(x) = \max_{i=1}^d x_i$ $\newcommand{\vecone}{\mathbf{1}}$ $\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}$. Let $\vecone$ be a $d$-dimensional vector whose each component is 1.

Then the solution to these optimization problems \[ \min_{x \in \mathbb{R}^d} \max(x) \textrm{ where } a^Tx = b \tag{Problem $P_1$} \] \[ \max_{x \in \mathbb{R}^d} \min(x) \textrm{ where } a^Tx = b \tag{Problem $Q_1$} \] is $\frac{b}{a^T\vecone} \vecone$.

Equivalently, the solution to these optimization problems \[ \min_{y \in \mathbb{R}^d} \max_{i=1}^d \frac{y_i}{a_i} \textrm{ where } \vecone^Ty = b \] \[ \max_{y \in \mathbb{R}^d} \min_{i=1}^d \frac{y_i}{a_i} \textrm{ where } \vecone^Ty = b \] is $\frac{b}{a^T\vecone} a$ and the optimal objective value is $\frac{b}{a^T\vecone}$.

Proof

For a problem $P$, we say that $x \in P$ iff $x$ is a feasible solution to $P$.

$\frac{b}{a^T\vecone}\vecone \in P_1$.

For $c \in \mathbb{R}$, define problems $P_2(c)$ and $Q_2(c)$ as \[ \textrm{Find } x \in \mathbb{R}^d \textrm{ such that } a^Tx = b \wedge \max(x) \le c \tag{Problem $P_2(c)$} \] \[ \textrm{Find } x \in \mathbb{R}^d \textrm{ such that } a^Tx = b \wedge \min(x) \ge c \tag{Problem $Q_2(c)$} \]

Lemma 1: Let $c^* = \frac{b}{a^T\vecone}$. Then

Proof: Let $c < c^*$. Assume that $P_2(c)$ is feasible. Let $x \in P_2(c)$. \begin{align} a^Tx &= \sum_{i=1}^d a_ix_i \\ &\le \sum_{i=1}^d a_i\max(x) \tag{$a_i \ge 0$} \\ &= \max(x)a^T\vecone \\ &\le ca^T\vecone \tag{$x$ is feasible, so $\max(x) \le c$} \\ &< c^*a^T\vecone = b \tag{$a^T\vecone > 0$} \end{align} Since $a^Tx < b$, $x$ cannot be a feasible solution, which is a contradiction. Hence, $P_2(c)$ is infeasible.

Now let $c \ge c^*$. Let $x = c^*\vecone$. Then $a^Tx = c^*a^T\vecone = b$ and $\max(x) = c^* \le c$. Therefore, $x$ is feasible for $P_2(c)$.

The fact about $Q_2$ can be proven similarly. \[ \tag*{$\square$} \]

Lemma 2: Let $x^*$ be an optimal solution to $P_1$. Then $\max(x^*) = c^*$

Proof: By lemma 1, $P_2(c^*)$ is feasible. Let $\widehat{x} \in P_2(c^*)$. Therefore, $\max(\widehat{x}) \le c^*$ and $\widehat{x} \in P_1$. The objective value of $\widehat{x}$ for $P_1$ is $\max(\widehat{x})$. Since $x^*$ is an optimal solution, $\max(x^*) \le \max(\widehat{x}) \le c^*$.

$x^* \in P_2(\max(x^*))$, so $P_2(\max(x^*))$ is feasible. By lemma 1, we know that $\max(x^*) \ge c^*$. Therefore, $\max(x^*) = c^*$. \[ \tag*{$\square$} \]

$\frac{b}{a^T\vecone}\vecone$ is feasible for $P_1$ and has objective value $c^*$, so it is an optimal solution to $P_1$ as per lemma 2.

We can similary prove that $\frac{b}{a^T\vecone}\vecone$ is an optimal solution to $Q_1$.

It is also easy to prove that the problems \[ \min_{y \in \mathbb{R}^d} \max_{i=1}^d \frac{y_i}{a_i} \textrm{ where } \vecone^Ty = b \] \[ \max_{y \in \mathbb{R}^d} \min_{i=1}^d \frac{y_i}{a_i} \textrm{ where } \vecone^Ty = b \] are equivalent to $P_1$ and $Q_1$ respectively via the transformation $y_i = a_ix_i$.

Dependency for: None

Info:

Transitive dependencies: None