ϕ is multiplicative

Dependencies:

  1. Euler's Totient Function
  2. Integer Division Theorem
  3. ab is coprime to x iff a and b are coprime to x
  4. Euclid's lemma

Let $a$ and $b$ be positive integers where $\gcd(a, b) = 1$. Let $\phi$ be Euler's totient function. Then $\phi$ is multiplicative, i.e. $\phi(ab) = \phi(a)\phi(b)$.

Proof

Let $x \in \mathbb{Z}_{ab}$. By the integer division theorem, there is a unique pair $(q, r)$ such that $x = aq + r$, where $0 \le r < a$. If $q \ge b$, then $x = aq + r \ge ab$. Therefore, $q < b$. Also, if $q \le -1$, then $x = aq + r < -a + a = 0$. Therefore, $q \ge 0$. Therefore, $r \in \mathbb{Z}_a$ and $q \in \mathbb{Z}_b$.

\[ \gcd(ab, x) = 1 \iff (\gcd(a, x) = 1 \wedge \gcd(b, x) = 1) \]

\[ \gcd(a, x) = 1 \iff \gcd(a, r) = 1 \iff r \in \mathbb{Z}_a^* \]

Let $f_r: \mathbb{Z}_b \mapsto \mathbb{Z}_b$ be a function where $f_r(y) = (ay + r) \% b$. \begin{align} & f_r(y_1) = f_r(y_2) \\ &\implies ay_1 + r \equiv ay_2 + r \pmod{b} \\ &\implies b \mid a(y_1 - y_2) \\ &\implies b \mid y_1 - y_2 \tag{by Euclid's lemma} \\ &\implies y_1 = y_2 \tag{$y_1, y_2 \in \mathbb{Z}_b$} \end{align} Therefore, $f_r$ is one-to-one. Since the domain and codomain of $f_r$ are finite and of the same size, $f_r$ is a bijection.

\[ \gcd(b, x) = 1 \iff \gcd(b, f_r(q)) = 1 \iff f_r(q) \in \mathbb{Z}_b^* \iff q \in f_r^{-1}(\mathbb{Z}_b^*) \]

Therefore, \[ \gcd(x, ab) = 1 \iff (r \in \mathbb{Z}_a^*) \wedge (q \in f_r^{-1}(\mathbb{Z}_b^*)) \] $r$ can take $|\mathbb{Z}_a^*| = \phi(a)$ values, $q$ can take $|f_r^{-1}(\mathbb{Z}_b^*)| = |\mathbb{Z}_b^*| = \phi(b)$ values and $x$ can take $|\mathbb{Z}_{ab}^*| = \phi(ab)$ values. Therefore, $\phi(ab) = \phi(a)\phi(b)$.

Dependency for: None

Info:

Transitive dependencies:

  1. Every number has a prime factorization
  2. Euler's Totient Function
  3. Integer Division Theorem
  4. GCD is the smallest Linear Combination
  5. Euclid's lemma
  6. ab is coprime to x iff a and b are coprime to x