Multiplication permutes Zn*

Dependencies:

  1. If x divides ab and x is coprime to a, then x divides b
  2. ab is coprime to x iff a and b are coprime to x

Let $\mathbb{Z}_n^* = \{x_1, x_2, \ldots \}$. Let $a\mathbb{Z}_n^* = \{ax_1, ax_2, \ldots \}$. Then $a\mathbb{Z}_n^* = \mathbb{Z}_n^*$ if $\gcd(a, n) = 1$.

Proof

$$a, x \in \mathbb{Z}_n^* \Rightarrow \gcd(a, n) = \gcd(x, n) = 1 \Rightarrow \gcd(ax, n) = 1 \Rightarrow ax \in \mathbb{Z}_n^*$$

Therefore, $a\mathbb{Z}_n^* \subseteq \mathbb{Z}_n^*$.

Let $a, x_1, x_2 \in \mathbb{Z}_n^*$.

\begin{align} & ax_1 \equiv ax_2 \pmod{n} \\ &\Rightarrow n \mid a(x_1 - x_2) \\ &\Rightarrow n \mid (x_1 - x_2) \tag{because $\gcd(a, n) = 1$} \\ &\Rightarrow x_1 \equiv x_2 \pmod{n} \end{align}

Therefore, there is a one-to-one mapping from $\mathbb{Z}_n^*$ to $a\mathbb{Z}_n^*$. Therefore, they are of the same size. Since $a\mathbb{Z}_n^* \subseteq \mathbb{Z}_n^*$, $a\mathbb{Z}_n^* = \mathbb{Z}_n^*$.

Dependency for:

  1. Euler's Theorem Used in proof

Info:

Transitive dependencies:

  1. Every number has a prime factorization
  2. Coprime
  3. Integer Division Theorem
  4. GCD is the smallest Linear Combination
  5. If x divides ab and x is coprime to a, then x divides b
  6. Euclid's lemma
  7. ab is coprime to x iff a and b are coprime to x