Existence of Modular Inverse
Dependencies:
- GCD is the smallest Linear Combination Used in proof
$(\exists x, ax \equiv 1 \pmod{n}) \iff \gcd(a, n) = 1$
Proof
$$ \gcd(a, n) = 1 \iff \exists x \exists y, ax + ny = 1 \iff \exists x, ax \equiv 1 \pmod{n} $$
Dependency for:
Info:
- Depth: 2
- Number of transitive dependencies: 2