Dual-feasible function

Dependencies: None

A function $f: (0, 1] \mapsto (0, 1]$ is dual-feasible iff for every sequence $x = [x_1, x_2, \ldots, x_n]$, \[ \sum_{i=1}^n x_i \le 1 \implies \sum_{i=1}^n f(x_i) \le 1 \]

$f$ can be defined for $(0, 1]^n \mapsto (0, 1]^n$ by applying it elementwise, i.e. $f(x)_i = f(x_i)$.

Dependency for:

  1. 1BP: config LP's dual gives a DFF

Info:

Transitive dependencies: None