Dual-feasible function
Dependencies: None
A function $f: (0, 1] \mapsto (0, 1]$ is dual-feasible iff for every sequence $x = [x_1, x_2, \ldots, x_n]$, \[ \sum_{i=1}^n x_i \le 1 \implies \sum_{i=1}^n f(x_i) \le 1 \]
$f$ can be defined for $(0, 1]^n \mapsto (0, 1]^n$ by applying it elementwise, i.e. $f(x)_i = f(x_i)$.
Dependency for:
Info:
- Depth: 0
- Number of transitive dependencies: 0