Restriction of a matroid
Dependencies:
Let $M = (S, I)$ be a matroid. Let $T \subseteq S$ and $M' = (T, I')$, where $I' = \{ X \cap T: X \subseteq I \}$.
Then $M'$ is called the restriction of $M$ to $T$. It can be proved that $M'$ is also a matroid.
Proof
Let $X \in I$. By the hereditary property, $X \cap T \in I$. Therefore, $I' \subseteq I$.
Let $X \subseteq Y \subseteq T$. Then \begin{align} & Y \in I' \\ &\implies Y \in I \tag{$I' \subseteq I$} \\ &\implies X \in I \tag{hereditary property of $M$} \\ &\implies X \cap T \in I' \tag{definition of $I'$} \\ &\implies X \in I' \tag{$X \subseteq T \Rightarrow X \cap T = X$} \end{align} Therefore, hereditary property holds for $M'$.
Let $X, Y \in I'$ and $|X| < |Y|$. Since $I' \subseteq I$, by the exchange property of $M$, $\exists e \in Y-X$ such that $X + e \in I$. Therefore, $(X + e) \cap T \in I' \implies X + e \in I'$.
Therefore, the exchange property also holds for $M'$.
Dependency for: None
Info:
- Depth: 1
- Number of transitive dependencies: 1