Uniform matroid
Dependencies:
Let $M = (S, I)$ where $I = \{ X \subseteq S: |X| \le k \}$. Then $M$ is a matroid, called the $k$-uniform matroid.
Proof
Hereditary property: \[ (X \subseteq Y \wedge Y \in I) \implies (|X| \le |Y| \wedge |Y| \le k) \implies |X| \le k \implies X \in I \]
Exchange property: Let $X, Y \in I$ and $|X| < |Y|$. Let $e \in Y - X$. \[ |X + e| = |X| + 1 \le |Y| \le k \implies X + e \in I \]
Dependency for: None
Info:
- Depth: 1
- Number of transitive dependencies: 1