p-norm

Dependencies:

  1. Vector

The $p$-norm of a vector $v$ is defined as:

\[ \|v\|_p = \left( \sum_{i=1}^n |v_i|^p \right)^{\frac{1}{p}} \]

A few special cases:

\[ \|v\|_1 = \sum_{i=1}^n |v_i| \] \[ \|v\|_2 = \|v\| = \sqrt{\sum_{i=1}^n v_i^2} \] \[ \|v\|_{\infty} = \max_{i=1}^n |v_i| \]

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Vector