Sum of stacked matrices
Dependencies:
Let $A_{i, j}$ and $B_{i, j}$ be $m_i$ by $n_j$ matrices for $1 \le i \le m$ and $1 \le j \le n$.
Then $\operatorname{stack}(A) + \operatorname{stack}(B) = \operatorname{stack}(C)$, where $C_{i, j}$ is an $m_i$ by $n_j$ matrix for $1 \le i \le m$ and $1 \le j \le n$ and $C_{i, j} = A_{i, j} + B_{i, j}$.
Proof
(Proof yet to be written)
Dependency for: None
Info:
- Depth: 4
- Number of transitive dependencies: 5