Sum of stacked matrices

Dependencies:

  1. Stacking

Let $A_{i, j}$ and $B_{i, j}$ be $m_i$ by $n_j$ matrices for $1 \le i \le m$ and $1 \le j \le n$.

Then $\operatorname{stack}(A) + \operatorname{stack}(B) = \operatorname{stack}(C)$, where $C_{i, j}$ is an $m_i$ by $n_j$ matrix for $1 \le i \le m$ and $1 \le j \le n$ and $C_{i, j} = A_{i, j} + B_{i, j}$.

Proof

(Proof yet to be written)

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Semiring
  4. Matrix
  5. Stacking