Identity matrix is identity of matrix product
Dependencies:
Let $R$ be a semiring with unity. \[ (\forall A \in \mathbb{M}_{m, n}(R), AB = A) \iff B = I_n. \] \[ (\forall A \in \mathbb{M}_{m, n}(R), BA = A) \iff B = I_m. \]
Proof
Part 1
\begin{align} & (AI_n)[i, j] \\ &= \sum_{k=1}^n A[i, k] I_n[k, j] \\ &= \left(\sum_{k=1}^{j-1} A[i, k] I_n[k, j]\right) + (A[i, j] I_n[j, j]) + \left(\sum_{k=j+1}^n A[i, k] I_n[k, j] \right) \\ &= \left(\sum_{k=1}^{j-1} A[i, k] 0\right) + (A[i, j] 1) + \left(\sum_{k=j+1}^n A[i, k] 0 \right) \\ &= A[i, j] \end{align}
Therefore, $AI_n = A$.
Similarly, \[ (I_mA)[i, j] = \sum_{k=1}^m I_m[i, k] A[k, j] = A[i, j] \implies I_mA = A \]
Part 2
$AB = A \Rightarrow B \in \mathbb{M}_{n, n}(R)$.
\begin{align} & (AB)[i, j] = A[i, j] \\ &\Rightarrow \sum_{k=1}^n A[i, k]B[k, j] = A[i, j] \\ &\Rightarrow B[k, j] = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases} \tag{comparing coefficients of $A[i, *]$} \end{align}
Therefore, $B = I_n$.
Similarly, when $BA = A$, $B = I_m$.
Dependency for: None
Info:
- Depth: 4
- Number of transitive dependencies: 8