Binomial coefficient: Sum 2
Dependencies:
\[ \sum_{i=k}^n \binom{i}{k} = \binom{n+1}{k+1} \]
Proof
\begin{align} & \sum_{i=k}^n \binom{i}{k} \\ &= \sum_{i=k} \left( \binom{i+1}{k+1} - \binom{i}{k+1} \right) \tag{additive recursion formula} \\ &= \binom{n+1}{k+1} - \binom{k}{k+1} \tag{telescoping series} \\ &= \binom{n+1}{k+1} \end{align}
Dependency for:
Info:
- Depth: 2
- Number of transitive dependencies: 2