Zp is an integral domain

Dependencies:

  1. Integral Domain
  2. Zn is a ring
  3. Modular Equivalence
  4. Euclid's lemma

If $p$ is prime, $\mathbb{Z}_p$ is an integral domain.

Proof

$\mathbb{Z}_p$ is a commutative ring with unity.

\begin{align} & ab \equiv 0 \pmod{p} \\ &\Rightarrow p \mid ab \\ &\Rightarrow p \mid a \vee p \mid b \tag{by Euclid's lemma} \\ &\Rightarrow a \equiv 0 \pmod{p} \vee b \equiv 0 \pmod{p} \end{align}

Therefore, $a$ and $b$ are not zero-divisors.

Since $\mathbb{Z}_p$ is a commutative ring with no zero-divisors, it is an integral domain.

Dependency for:

  1. Gauss' Lemma

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Integral Domain
  4. Modular Equivalence
  5. Modular multiplication
  6. Modular addition
  7. Integer Division Theorem
  8. Zn is a ring
  9. GCD is the smallest Linear Combination
  10. Euclid's lemma