Zp is an integral domain
Dependencies:
If $p$ is prime, $\mathbb{Z}_p$ is an integral domain.
Proof
$\mathbb{Z}_p$ is a commutative ring with unity.
\begin{align} & ab \equiv 0 \pmod{p} \\ &\Rightarrow p \mid ab \\ &\Rightarrow p \mid a \vee p \mid b \tag{by Euclid's lemma} \\ &\Rightarrow a \equiv 0 \pmod{p} \vee b \equiv 0 \pmod{p} \end{align}
Therefore, $a$ and $b$ are not zero-divisors.
Since $\mathbb{Z}_p$ is a commutative ring with no zero-divisors, it is an integral domain.
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 10