I is a prime ideal iff R/I is an integral domain

Dependencies:

  1. Ideal
  2. Integral Domain
  3. Quotient Ring
  4. gH = H iff g in H

Let $R$ be a commutative ring with unity. Let $I$ be a proper ideal of $R$.

$I$ is defined to be a prime ideal iff $ab \in I \Rightarrow (a \in I \vee b \in I)$.

$I$ is a prime ideal iff $R/I$ is an integral domain.

Proof

Proof of 'only-if' part

Let $I$ be a prime ideal.

\begin{align} & (a+I)(b+I) = 0+I \\ &\Rightarrow ab + I = I \\ &\Rightarrow ab \in I \\ &\Rightarrow a \in I \vee b \in I \tag{$I$ is prime} \\ &\Rightarrow a+I = 0+I \vee b+I = 0+I \end{align}

Therefore, $R/I$ is an integral domain.

Proof of 'if' part

Let $R/I$ be an integral domain.

\begin{align} & ab \in I \\ &\Rightarrow ab + I = I \\ &\Rightarrow (a+I)(b+I) = 0 + I \\ &\Rightarrow a+I = 0+I \vee b+I = 0+I \tag{$R/I$ is an integral domain} \\ &\Rightarrow a \in I \vee b \in I \end{align}

Therefore, $I$ is a prime ideal.

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Coset
  3. For subset H of a group, a(bH) = (ab)H and (aH)b = a(Hb)
  4. Ring
  5. Integral Domain
  6. Ideal
  7. Subgroup
  8. Normal Subgroup
  9. Product of normal cosets is well-defined
  10. Factor group
  11. Inverse of a group element is unique
  12. gH = H iff g in H
  13. Product of ideal cosets is well-defined
  14. Quotient Ring