Inverse of a coset
Dependencies:
Let $H$ be a subset of group $G$. $H^{-1}$ is defined to be $\{h^{-1}: h \in H\}$.
Then $(gH)^{-1} = H^{-1}g^{-1}$. When $H$ is a group, $(gH)^{-1} = Hg^{-1}$.
Proof
$$ (gH)^{-1} = \{(gh)^{-1}: h \in H\} = \{h^{-1}g^{-1}: h \in H\} = H^{-1}g^{-1} $$
When $H$ is a group, $H^{-1} = H$, because $H^{-1} \subseteq H$ and $|H^{-1}| = |H|$.
Dependency for: None
Info:
- Depth: 2
- Number of transitive dependencies: 2