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1 Context-free grammar

1.1 Definition

Definition 1. A context-free grammar (CFG) G is a quadruple (V,Σ, R, S) where

• V is an alphabet.

• Σ ⊂ V is the set of terminals.

• S ∈ V − Σ is the start symbol.

• R ∈ (V − Σ)× V ∗ is the set of rules.

Definition 2. |R| is the number of rules in G. |G| is the sum of length of all rules in G.

Definition 3. A →G u ⇐⇒ (A, u) ∈ R.

Definition 4. u ⇒G v
⇐⇒ (∃x, y, w ∈ V ∗,∃A ∈ V − Σ, (u = xAy ∧ v = xwy ∧ A →G w))

Definition 5. u
L⇒G v

⇐⇒ (∃x ∈ Σ∗, y, w ∈ V ∗,∃A ∈ V − Σ, (u = xAy ∧ v = xwy ∧ A →G w))

Definition 6. u
R⇒G v

⇐⇒ (∃x,w ∈ V ∗,∃y ∈ Σ∗,∃A ∈ V − Σ, (u = xAy ∧ v = xwy ∧ A →G w))

Definition 7 (⇒n
G).

u ⇒0
G v ⇐⇒ u = v

For n ≥ 1, u ⇒n
G v ⇐⇒ (∃w, u ⇒G w ∧ w ⇒n−1

G v)

u ⇒∗
G v ⇐⇒ (∃n, u ⇒n

G v)

Definition 8. For u ∈ V ∗, LG(u) = {w ∈ Σ∗ : u ⇒∗
G w}. L(G) = LG(S). If L = L(G),

G generates L and L is a context-free language (CFL).

Theorem 1. For w ∈ Σ∗ and x ∈ V ∗, x ⇒∗
G w ⇐⇒ x ⇒L∗

G w.

1.2 Right-linear grammar

Definition 9. G is a right-linear grammar iff each rule is of the form P ⇒G sQ, where
P ∈ V − Σ, Q ∈ V − Σ ∪ {e} and s ∈ Σ∗.

Theorem 2. A language is regular ⇐⇒ it is generated by a right-linear grammar.

Proof of ⇒. Let L be a regular language. Then it is accepted by the NFAM = (Q,Σ,∆, s, F ).
Let G = (Q∪Σ, R, s, F ), where F = {q →G e : q ∈ F} and R = {q →G ap : (q, a, p) ∈ ∆}.
It can be proved that L(G) = L(M).

Proof of ⇐. Let G = (V,Σ, R, S) be a right-linear grammar. Let M = ((V − Σ) ∪
{f},Σ,∆, S, {f}) where

∆ = {(P, s,Q) : P →G sQ ∧Q ̸→G e} ∪ {(P, s, f) : P →G sQ ∧Q →G e}

It can be proved that L(G) = L(M).
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1.3 Examples

• L(S → e | aSb) = {anbn : n ≥ 0}

• L(S → e | SS | (S)) is the language of balanced parenthesis.

• L(S → e | a | b | aSa | bSb) is the language of palindromes.

• L(S → e | aSb | bSa | SS) is the language of strings with equal number of
occurrences of a and b.

To prove that L(G) ⊆ L′, use induction on the length of derivations (this is usually easy).
Proving that L′ ⊆ L(G) can be done by using induction on the length of input (this can
be hard).

Lemma 3. Let f(w) be the number of occurrences of a minus the number of occurrences
of b. If f(w) = 0 and the first and last characters of w are same, then w = xy, where
x, y ∈ {a, b}+ and f(x) = f(y) = 0.

Proof. It is trivial to prove that f(u+ v) = f(u) + f(v).
Let w = czc and |w| = n, where c ∈ {a, b}.
Let w[: k] be the k-length prefix of w.
f(w[: 0]) = f(e) = 0, f(w[: 1]) = f(c).
f(w) = 0 ⇒ f(cz) + f(c) = 0 ⇒ f(w[: n− 1]) = −f(c).
Since f(w[: i]) changes sign for i ∈ [1, n− 1] and f(w[: i]) and f(w[: i+1]) can only differ
by 1, ∃i ∈ [1, n− 1] such that f(w[: i]) = 0.
Let w[: i] = x. Let w = xy. Then f(x) = 0 and f(y) = f(w)− f(x) = 0.

Theorem 4. G = (S → e | aSb | bSa | SS) is the grammar of strings with equal number
of occurrences of a and b.

Proof. We will prove by induction that L′ ⊆ L(G)

Base step: e ∈ L(G)

Inductive step: Assume that ∀|x| < n, f(x) = 0 ⇒ x ∈ L(G) (induction hypothesis). Let
|w| = n and f(w) = 0.

Case 1: First and last characters of w are same. If the first and last characters of w
are same, ∃x, y such that w = xy and 1 ≤ |x|, |y| ≤ n−1 and f(x) = f(y) = 0 (by lemma
3). By induction hypothesis, x, y ∈ L(G). Therefore, S ⇒G SS ⇒∗

G xS ⇒∗
G xy = w.

Therefore, w ∈ L(G).

Case 2: w = axb. w = axb ⇒ f(x) = 0 ⇒ x ∈ L(G). S ⇒G aSb ⇒∗
G axb. Therefore,

w ∈ L(G).

Case 3: w = bxa. This is similar to case 2.

In all 3 cases, w ∈ L(G). Therefore by mathematical induction, L′ ⊆ L(G).
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2 Parse-trees

Definition 10. A derivation in which we always replace the leftmost non-terminal is a
leftmost derivation.

Theorem 5. Every derivation has a unique parse tree associated with it. Every parse
tree has a unique leftmost derivation.

Proof. A derivation can be used to build the parse tree step-by-step. The string obtained
after k steps in the derivation will match the yield of the parse tree after k steps.

In the beginning, the tree has a single node containing the start symbol.

In the kth step, when a rule application happens, a certain non-terminal in the string gets
replaced. Find the corresponding symbol in leaf nodes of the parse tree and expand that
node.

Therefore, corresponding to a derivation, we get a persistent-parse-tree (look up the
definition of ‘persistent data structure’). The last time-slice is the parse tree we want.
Since the construction is deterministic, the parse tree is unique.

We can also do the reverse: Given a parse tree, we can create a persistent parse tree out
of it. The first time-slice will be a single node containing the start symbol.

To get the kth time-slice from the (k + 1)th time-slice, expand a leaf node containing a
non-terminal. The rule to be used for expansion has to be looked up from the parse tree.

This way, we can get a sequence of parse-trees where each one is obtained from the next
by expanding a single non-terminal leaf node. The yields of the parse trees will give the
derivation of the string.

If we always expand the leftmost non-terminal in the parse-tree slice, the algorithm will
become deterministic, so we will obtain a unique derivation. This derivation is a leftmost
derivation.

Definition 11. If multiple distinct parse trees exist for a string in a grammar, that string
is said to be ‘ambiguous’ for that grammar. A grammar which has an ambiguous string is
an ambiguous grammar. A language for which all grammars are ambiguous is ‘inherently
ambiguous’.

3 Pushdown Automata

Definition 12. A pushdown automaton (PDA) M is a tuple (K,Σ,Γ,∆, s, F ) where

• K is the set of states.

• Σ is the input alphabet.

• Γ is the stack alphabet.

• s ∈ K is the start state.

• F ⊆ K are the final states.
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• ∆ ⊆ (K×(Σ?)×Γ∗)×(K×Γ∗) (finite subset) is the transition function. ((p, a, β), (q, γ)) ∈
∆ means ‘when in state p, input symbol is a and top of the stack is β, go to state q,
pop β and push γ’. Top of the stack being β means that β is a substring of the stack
when the stack is read top-to-bottom. Pushing γ means first push its last symbol,
then its second-last symbol, and so on.

Definition 13. A configuration of a PDA M is an element (q, w, x) ∈ (K × Σ∗ × Γ∗)
which means that M is in state q, input w is remaining to be read and the stack content
is x (left-to-right in x means top-to-bottom in stack).

Definition 14. (p, x, u) ⊢M (q, y, v) ⇐⇒ there is a transition which can take M from
(p, x, u) to (q, y, v). ⊢∗

M is the reflexive-transitive closure of ⊢M .

Definition 15. w ∈ L(M) ⇐⇒ (∃f ∈ F, (s, w, e) ⊢M (f, e, e)).

4 PDAs and CFGs

4.1 Incremental left derivation

Definition 16. Let G = (V,Σ, R, S) be a grammar.

For u1, u2 ∈ Σ∗, A ∈ V and v1, v2 ∈ V ∗, (u1, Av1)
L⇒G (u2, v2)

⇐⇒

{
u2 = u1A ∧ v2 = v1 if A ∈ Σ

u2 = u1 ∧ (∃β ∈ V ∗, A →G β ∧ v2 = βv1) if A ∈ V − Σ

For v ∈ V ∗ and w ∈ Σ∗, if (e, v)
L⇒

∗
G (w, e), then the sequence of

L⇒G operations is called
an incremental left derivation of w from v.

Lemma 6. ((u1, v1)
L⇒G (u2, v2)) =⇒ (u1v1 = u2v2 ∨ u1v1

L⇒G u2v2)

Lemma 7. For x ∈ Σ∗, A ∈ V − Σ and y, β ∈ V ∗,

xAy
L⇒G xβy =⇒ (x,Ay)

L⇒G (x, βy).

Theorem 8. For w ∈ Σ∗, (γ ⇒∗
G w) ⇐⇒ ((e, γ)

L⇒
∗
G (w, e)).

Therefore, w ∈ L(G) iff an incremental left derivation of w exists from S, i.e. (e, S)
L⇒

∗
G

(w, e).

4.2 Incremental right derivation

Definition 17. Let G = (V,Σ, R, S) be a grammar.

For u1, u2 ∈ V ∗, A ∈ V and v1, v2 ∈ Σ∗, (u1A, v1)
R⇒G (u2, v2)

⇐⇒

{
u2 = u1 ∧ v2 = Av1 if A ∈ Σ

v2 = v1 ∧ (∃β ∈ V ∗, A →G β ∧ u2 = u1β) if A ∈ V − Σ

For v ∈ V ∗ and w ∈ Σ∗, if (v, e)
R⇒

∗
G (e, w), then the sequence of

R⇒G operations is called
an incremental right derivation of w from v.

Theorem 9. For w ∈ Σ∗, (γ ⇒∗
G w) ⇐⇒ ((γ, e)

R⇒
∗
G (e, w)).
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4.3 Standard non-deterministic top-down parser

Definition 18. Let G = (V,Σ, R, S) be a CFG. Let M = ({s, f},Σ, V,∆, s, {f}) be a
PDA containing the following transitions:

• ((s, e, e), (f, S))

• ((f, a, a), (f, e)) for all a ∈ Σ.

• ((f, e, A), (f, β)) for all A →G β ∈ R.

Then M is a standard non-deterministic top-down parser for G.

Denote by (u, v, x)w the configuration of M on input w when it is at state f , has read
input u, has input v remaining to be read and contains x on the stack.

Theorem 10. (u1, v1, x1)w ⊢M (u2, v2, x2)w ⇐⇒ (u1, x1)
L⇒G (u2, x2).

Theorem 11. L(M) = L(G).

Proof.

w ∈ L(G)

⇐⇒ (e, S)
L⇒

∗
G (w, e)

⇐⇒ (e, w, S)w ⊢∗
M (w, e, e)w

⇐⇒ w ∈ L(M)

Therefore, every CFG G has an equivalent PDA M , its standard non-deterministic top-
down parser. Also, every step of M can be mapped to a step in an incremental left
derivation of the input.

4.4 Standard non-deterministic bottom-up parser

Definition 19. Let G = (V,Σ, R, S) be a CFG. Let M = ({s, f},Σ, V,∆, s, {f}) be a
PDA containing the following transitions:

• ‘Shift’ transitions: ((s, a, e), (s, a)) for all a ∈ Σ.

• ‘Reduce’ transitions: ((s, e, βR), (s, A)) for all A →G β ∈ R.

• ‘Final’ transition: ((s, e, S), (f, e)).

Then M is a standard non-deterministic bottom-up parser for G.

Denote by (u, v, x)w the configuration of M on input w when it is at state s, has read
input u, has input v remaining to be read and contains x on the stack.
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Theorem 12. (u1, v1, x1)w ⊢M (u2, v2, x2)w ⇐⇒ (xR
2 , v2)

R⇒G (xR
1 , v1).

Theorem 13. L(M) = L(G).

Proof.

w ∈ L(G)

⇐⇒ (S, e)
R⇒

∗
G (e, w)

⇐⇒ (e, w, e)w ⊢∗
M (w, e, S)w

⇐⇒ w ∈ L(M)

Therefore, every CFG G has an equivalent PDA M , its standard non-deterministic
bottom-up parser. Also, every step of M can be mapped to a reverse-step in an in-
cremental right derivation of the input.

4.5 Simple PDA

A PDA M is simple iff all of the following are true:

• There is no transition to the start state. There is a single transition from the start
state and that transition does not read the input tape.

• There is a single final state. Transitions to the final state do not read the input
tape.

• In every transition, M either pushes a single symbol or pops a single symbol or
does nothing to the stack.

• M ’s stack is never empty except at the start state or in the final state where it
should be empty.

• Every transition (except the one from the start state) consults the stack.

This implies that in a simple PDA, the start state always has to push a single symbol to
the stack. We call it the ‘bottom marker’ and denote it by Z. Also, Z is always present
in the stack except at the start state or the final state.

A PDA M = (Q,Σ,Γ,∆, s, F ) can always be transformed to be simple. This is how:

• Introduce a new stack symbol Z.

• Add a new start state s′ and the transition ((s′, e, e), (s, Z)).

• Add a new final state f ′ and the transition ((f, e, Z), (f ′, e)) for all f ∈ F .

• ∀((p, a, β), (q, γ)) ∈ ∆, add new states and transitions which first iteratively pop
symbols of β and then iteratively push symbols of γ. The stack will never get empty
because no pop can remove Z.

• Replace ((p, a, e), (q, b)) by the transitions ((p, a, c), (q, cb)) for every c ∈ Σ.
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4.6 PDA to CFG

Let M = (Q,Σ,Γ ∪ {Z},∆, s, {f}) be a simple PDA.
Let ((s, e, e), (s′, Z)) ∈ ∆ and ((f ′, e, Z), (f, e)) ∈ ∆.

Let G = (V,Σ, R, S) where V = Σ ∪ {S} ∪ {⟨q, A, p⟩ : p, q ∈ Q ∧ A ∈ Γ ∪ {e, Z}}.
There are 4 kinds of rules in R:

• S → ⟨s, Z, f⟩.

• For q ∈ Q: ⟨q, e, q⟩ → e.

• For every p ∈ Q and every stack pop/no-op ((q, a, B), (r, C)) (C ∈ {e, B}):
⟨q, B, p⟩ → a⟨r, C, p⟩.

• For every p, p′ ∈ Q and every stack push ((q, a, B), (r, CB)):
⟨q, B, p⟩ → a⟨r, C, p′⟩⟨p′, B, p⟩.

Lemma 14. (Can be proved using induction)
⟨p,A, q⟩ ⇒∗

G x ⇐⇒ (p,A, x) ⊢∗
M (q, e, e)

Theorem 15. L(G) = L(M)

Proof.

w ∈ L(G)

⇐⇒ ⟨s′, Z, f⟩ ⇒∗
G w

⇐⇒ (s′, w, Z) ⊢∗
M (f, e, e)

⇐⇒ w ∈ L(M)

5 Closure properties

Let G1 = (V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2) be CFGs. Since renaming non-
terminals does not affect a grammar, we can assume that V1 − Σ1 and V2 − Σ2 are
disjoint.

L(G1) ∪ L(G2) = L((V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1|S2}, S))
L(G1)L(G2) = L((V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S))
L(G1)

∗ = L((V1 ∪ {S},Σ1, R1 ∪ {S → e|S1S}, S))

Theorem 16. Intersection of a regular language with a CFL is context-free.

A PDA for the intersection can be obtained by taking the cross product of the states of
the DFA of the regular language and the states of the PDA of the CFL.
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6 Pumping Theorem

Definition 20. The fanout of a grammar G, denoted as ϕ(G), is the maximum RHS
length in its rules.

Lemma 17. Let G = (V,Σ, R, S) be a CFG. For w ∈ L(G), |w| > ϕ(G)h implies that
the parse tree of w has height greater than h.

Theorem 18 (Pumping theorem). Let G = (V,Σ, R, S) be a CFG. Then ∀w ∈ L(G), |w| >
ϕ(G)|V−Σ| =⇒
(∃u, v, x, y, z ∈ Σ∗, w = uvxyz ∧ vy ̸= e∧
(∀i ≥ 0, uvixyiz ∈ L(G))).

Corollary 18.1. L = {anbncn : n ≥ 0} is not context-free.

Proof. Let w = anbncn where n > ϕ(G)|V−Σ|/3. Let w = uvxyz such that vy ̸= 0. If
vy has all occurrences of all of {a, b, c}, then v or y has occurrences of 2 of {a, b, c}.
Therefore, uvkxykz will have characters in the wrong order for k ≥ 2. If vy does not have
a certain character, then uvkxykz will have unequal number of characters for k ̸= 1. This
contradicts the pumping theorem, so L is not context-free.

Theorem 19 (Corollary of Parikh’s Theorem). Let L be a language over a single char-
acter. Then L is context-free iff L is regular.

Theorem 20. CFLs are not closed under intersection or complementation.

Proof. L1 = {ambncn : m,n ≥ 0} and L2 = {ambmcn : m,n ≥ 0} are context-free. But
L1∩L2 = {anbncn : n ≥ 0} is not context-free. Complementation cannot be closed under

CFLs, because L1 ∩ L2 = L1 ∪ L2.

7 Algorithms for CFGs

7.1 Finding erasable non-terminals

Definition 21. A non-terminal A is erasable iff A ⇒∗
G e.

To find the set of erasable non-terminals, follow this algorithm:

Algorithm 1 Finding all erasable non-terminals in G = (V,Σ, R, S)

E = {} ▷ Implement as a bitset on V − Σ.
do

E ′ = E
for A →G β ∈ R where A ̸∈ E do

if β ∈ E∗ then
E . add(A)

end if
end for

while E ′ ̸= E

Running time: O(|V − Σ||G|). Auxiliary space: Θ(|V − Σ|).
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7.2 Finding unit derivability

Definition 22. B ∈ V is unit-derivable from A iff A ⇒∗
G B. D(A) = {B ∈ V : A ⇒∗

G

B}.

Algorithm to find D(A) for all A ∈ V , if the grammar G = (V,Σ, R, S) has no erasable
non-terminals:

• Make a directed graph where V is the set of vertices. Make an edge from A to B
iff A →G B ∈ R.

• Apply depth-first search from every A ∈ V . Add every vertex encountered during
depth-first search to D(A).

Running time: O(|V − Σ|min(|R|, |V ||V − Σ|)).
Auxiliary space: O(min(|R|, |V ||V − Σ|) + |V − Σ|).
Output size: O(|V − Σ||V |).

7.3 Chomsky normal form

Definition 23. A grammar G = (V,Σ, R, S) is in Chomsky normal form iff every rule
is of one of these forms:

• A →G BC where A ∈ V − Σ and B,C ∈ V − {S}.

• A →G a where A ∈ V − Σ and a ∈ Σ.

• S →G e

The following algorithm transforms a grammar G into Chomsky normal form grammar
G′. The algorithm proceeds in stages, and in each state the language of the grammar
remains unchanged:

1. Eliminate S from RHS: Change the start symbol to S ′ and add the rule S ′ →G S.

2. Eliminate long rules, i.e. rules of the form A →G B1B2 . . . Bn where Bi ∈ V and
n ≥ 3.

3. Eliminate e−rules, i.e. rules of the form A →G e.

4. Eliminate unit rules, i.e. rules of the form A →G B, where B ∈ V .

7.3.1 Eliminating long rules

Replace each rule of the form A →G B1B2 . . . Bn by the rules A →G B1A1 , A1 →G

B2A2 , . . . , An−3 →G Bn−2An−2 , An−2 →G Bn−1Bn.

• Running time: Θ(|G|).
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• Auxiliary space: Θ(1).

• Change in grammar size: |G′| ∈ Θ(|G|) and |R′| ∈ Θ(|G|) and |V ′ − Σ| ∈ O(|G|).

Since |R′| = Θ(|G′|), we will use |R′| as a measure of grammar size in subsequent steps.

7.3.2 Eliminating e-rules

1. Find E , the set of erasable non-terminals.

2. Remove all rules of the form A ⇒G e.

3. For every rule A →G BC, if B ∈ E then add the rule A →G C and if C ∈ E then
add the rule A →G B.

4. If S ∈ E , add the rule S →G e.

• Running time: O(|V − Σ||G|).

• Auxiliary space: Θ(|V − Σ|).

• Side-effects on grammar: Some non-terminals can become non-instantiable.

• Change in grammar’s size: |R| ≤ |R′| ≤ 3|R| − 1.

7.3.3 Eliminating unit rules

1. Find D(A) = {B ∈ V : A ⇒∗
G B} for each A ∈ V − Σ. This can be done easily

since there are no e-rules.

2. Remove all rules of the form A →G B.

3. For all A ∈ V − Σ, add rule A →G a for a ∈ Σ ∩ D(A) and add rule A ⇒ CD for
all B ∈ D(A) and B →G CD.

• Running time: O(|V − Σ|(|Σ|+ |R|).

• Auxiliary space: O(|V ||V − Σ|).

• Side-effects on grammar: Some non-terminals can become non-instantiable.

• Change in grammar’s size: |R′| ≤ |V − Σ|min(|R|, |V |2) because each new rule’s
LHS is a non-terminal and each new rule’s RHS is the RHS of some old rule.
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7.3.4 Eliminating unit rules (alternate algorithm)

This algorithm has a worse time-complexity than the previous algorithm, but it is men-
tioned here for completeness.

1. Find D(A) = {B ∈ V : A ⇒∗
G B} for each A ∈ V − Σ. This can be done easily

since there are no e-rules.

2. Remove all rules of the form A →G B.

3. For each rule A →G BC, add the rule A →G BiCi for each Bi ∈ D(B) and
Ci ∈ D(C).

4. For each rule of the form A →G BC, if A ∈ D(S), add S →G BC.

5. Add the rule S →G a for all a ∈ Σ ∩D(S).

• Running time: O(|V |(|V − Σ|2 + |R||V |)).

• Auxiliary space: O(|V ||V − Σ|).

• Side-effects on grammar: Some non-terminals can become non-instantiable.

• Change in grammar’s size: |R′| ≤ |V − Σ||V |2.

7.3.5 Converting to Chomsky normal form

• Running time: O(|G|2).

• Auxiliary space: O(|G|2).

• Change in grammar size: |V ′ − Σ| ∈ O(|G|), |R′| ∈ O(|G|2) and |G′| ∈ O(|G|2).

7.4 CYK Algorithm

The CYK algorithm takes (w,G) as input and uses dynamic programming to find out
whether w ∈ L(G). Here G = (V,Σ, R, S) is a grammar in Chomsky-normal form.

Let RA = {β ∈ V ∗ : (A →G β) ∈ R}. Therefore, |R| =
∑

A∈V−Σ |RA|.
Let f(A, i, j) = (A ⇒∗

G w[i : j]). Then

f(A, i, j) =


false i ≥ j

w[i] ∈ RA j = i+ 1∨
BC∈RA

j−1∨
k=i+1

(f(B, i, k) ∧ f(C, k, j)) j > i+ 1

w ∈ L(G) ⇐⇒ f(S, 0, |w|). The CYK algorithm computes f(A, i, j) for all A ∈ V − Σ
and all 0 ≤ i < j ≤ n using dynamic programming.

Time to compute f(A, i, j) is Θ(|RA|(j−i)) if sub-problem solutions are already available.
Time to compute f for all (A, i, j) is therefore Θ(|R||w|3).
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7.5 Removing non-productive symbols

Definition 24. For the CFG G = (V,Σ, R, S), A ∈ V is productive iff ∃w ∈ Σ∗, A ⇒∗
G w.

Algorithm 2 Finding all productive non-terminals in G = (V,Σ, R, S)

P = {} ▷ Implement as a bitset on V − Σ.
do

P ′ = P
for A →G β ∈ R where A ̸∈ P do

if β ∈ (P ∪ Σ)∗ then
P. add(A)

end if
end for

while P ′ ̸= P

Running time: O(|V − Σ||G|). Auxiliary space: Θ(|V − Σ|).
To remove non-productive symbols from G, remove all rules which have a non-productive
symbol on the LHS or in the RHS. This will not change the language of G.

8 Deterministic PDA

Definition 25. Two strings are consistent iff one is a prefix of the other.

Definition 26. For a PDA, two transitions ((p, a1, β1), (q1, γ1)) and ((p, a2, β2), (q2, γ2))
are compatible iff a1 and a2 are consistent and β1 and β2 are consistent.

Definition 27. A PDA is deterministic iff no two of its transitions are compatible.

Definition 28. A language L is deterministic context-free iff there is a DPDA M such
that L$ = L(M). Here $ is a symbol which is not in the alphabet of L.

Theorem 21. For every DCFL L, there is a DPDA with these properties:

• It halts on an input iff it reads the whole input.

• It has an empty stack and is not in the starting state iff it has halted.

From now on we can (and we will) assume (WLOG) that all DPDAs have the above
properties.

8.1 Closure under complementation

Theorem 22. Let M be the DPDA obtained by switching the finalness of states of DPDA
M . Then w halts M iff it halts M . Also, if w halts M , w ∈ L(M) ⇐⇒ w ∈ L(M).

Definition 29. The configuration (p, w, x) is a dead-end iff (p, w, x) ⊢∗
M (q, w′, y) =⇒

(w = w′ ∧ |x| ≤ |y|).
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Theorem 23. DPDA M does not halt on input w iff it has a dead-end configuration.

Theorem 24. Every DPDA has an equivalent simple DPDA.

If (q, w, x) is a dead end in a simple DPDA, then by theorem 21, w ̸= e and x ̸= e.

Theorem 25. (q, aw, bx) is a dead end iff (q, a, b) is also a dead end.

Let D ⊆ Q × Σ × Γ be the set of all dead-end triples. This is a well-defined and finite
set.

Steps to convert a simple DPDA M into an equivalent simple DPDA M ′ without dead-
ends:

• For all (q, a, b) ∈ D, remove from ∆ all transitions compatible with (q, a, b).

• Add 2 non-final states r and r′.

• For all (q, a, b) ∈ D, add the transition ((q, a, b), (r, e)).

• Add the transitions ((r, a, e), (r, e)) for all a ∈ Σ.

• Add the transition ((r, $, e), (r′, e)).

• Add the transitions ((r′, e, b), (r′, e)) for all b ∈ Γ (by the way, Γ includes the
bottom-marker).

If M has no dead-end configurations, L(M) = L(M). Therefore, deterministic CFLs are
closed under complementation.

Theorem 26. Let L = {ambncp : m ̸= n ∨ n ̸= p}. Then L is context-free but not
deterministic context-free.

Proof. L′ = L ∩ a∗b∗c∗ = {anbncn : n ≥ 0} is known to not be context-free. If L was
DCFL, L would be a DCFL and so L′ would be a CFL.

9 Deterministic Parsing

Definition 30. For a grammar G, a deterministic parser M is a DPDA which can iden-
tify whether w ∈ L(G) and construct a parse-tree for w in G. It does this by sometimes
outputting a rule when following a transition. These rules, taken in order, form the rules
applied in a leftmost derivation of w.

9.1 LL(1) top-down parser

Definition 31. For grammar G = (V,Σ, R, S), an LL(1) top-down parser is a DPDA
M = ({p, q}∪{qa : a ∈ Σ∪{$}},Σ, V,∆, p, {q$}) such that ∆ has the following transitions:

• ((p, e, e), (q, S))
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• ((q, a, e), (qa, e)) for all a ∈ Σ ∪ {$}

• ((qa, e, a), (q, e)) for all a ∈ Σ ∪ {$}

• ((qa, e, A), (qa, β)) for all A →G B ∈ R for some a ∈ Σ ∪ {$}. Output A →G B
when following this transition.

For M to be deterministic, for transitions ((qa, e, A), (qa, β1)) and ((qb, e, A), (qb, β2)),
a ̸= b.

Not all grammars have an LL(1) top-down parser. But it is sometimes possible to trans-
form a grammar so that it has an LL(1) top-down parser. We now mention two heuristic
rules for such transformations.

9.1.1 Heuristic transformation rules

Left factoring. If there are rules A → αβi for multiple i, transform them to rules
A → αB and B → βi for all i.

Removing left recursion. If there are rules A → Aαi and A → βj for i ≥ 1 and
j ≥ 1, transform them to rules A → βjB, B → e and B → αiB for i ≥ 1 and j ≥ 1.

9.2 First and Follow

Let G = (V,Σ, R, S) be a CFG.

Definition 32. first : V ∗ 7→ Σ ∪ {e} is a function where

first(α) = {a ∈ Σ : ∃u ∈ Σ∗, α ⇒∗
G au} ∪ {e if ∃u ∈ Σ∗, α ⇒∗

G e}

Theorem 27.

∀a ∈ Σ ∪ {e}, first(a) = {a}

first(Aγ) = (first(A)− {e}) ∪

{
{} if e ̸∈ first(A)

first(γ) if e ∈ first(A)

first(A) =
⋃

A→Gβ

first(β)

The above theorem can be used to find first for any string in V ∗. This isn’t an algorithm,
but an algorithm exists but I won’t mention it here.

Definition 33. follow : V − Σ 7→ Σ ∪ {$} is a function where

follow(A) = {a ∈ Σ : ∃x, y ∈ V ∗, S ⇒∗
G xAay} ∪ {$ if ∃x ∈ V ∗, S ⇒∗

G xA}
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Theorem 28.

$ ∈ follow(S)

(A →G xBy) =⇒(
(first(y)− {e}) ∪

{
{} if e ̸∈ first(y)

follow(A) if e ∈ first(y)

)
⊆ follow(B)

A closure-like algorithm can find follow for all non-terminals.

9.3 LL(1) grammar

A CFG is LL(1) iff it has an LL(1) top-down parser.

Theorem 29. A CFG G = (V,Σ, R, S) is LL(1) iff all of the following conditions hold
for every pair of distinct transitions A →G α and A →G β:

• first(α) ∩ first(β) = {}.

• e ∈ first(β) =⇒ first(α) ∩ follow(A) = {}.

Definition 34. P : ((V − Σ)× Σ)× V ∗ where P((A, a), β)
⇐⇒ (A →G β ∈ R ∧ (a ∈ first(β) ∨ (e ∈ first(β) ∧ a ∈ follow(A)))).

Theorem 30. If G is an LL(1) grammar,
(P((A, a), β) ∧ P((A, a), γ)) =⇒ β = γ.

Therefore, P can be expressed as function like (V −Σ)×Σ 7→ V ∗∪{⊥} where P (A, a) =
β ⇐⇒ P ((A, a), β) and P (A, a) = ⊥ ⇐⇒ (∀β ∈ V ∗, P ((A, a), β)).

P is called the parsing table for G. An LL(1) top-down DPDA M = ({p, q} ∪ {qa : a ∈
Σ ∪ {$}},Σ, V,∆, p, {q$}) can be made by using the following transitions:

• ((p, e, e), (q, S))

• ((q, a, e), (qa, e)) for all a ∈ Σ ∪ {$}

• ((qa, e, a), (q, e)) for all a ∈ Σ ∪ {$}

• ((qa, e, A), (qa, P (A, a))) for all A ∈ V − Σ and a ∈ Σ if P (A, a) ̸= ⊥. Output
A →G B when following this transition.
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