
The Simplex Method

Eklavya Sharma

This document describes the simplex method for solving linear programs.

1 Preliminaries

Theorem 1. Any linear programming problem can be reduced to the following problem
(called a standard form linear program):

min
x∈Rn

cTx where Ax = b and x ≥ 0.

Here A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

We will also assume without loss of generality that rank(A) = m.

Read the following concepts at TheoremDep (https://sharmaeklavya2.github.io/
theoremdep/):

• Basic feasible solution (BFS)
• Extreme point of a convex set
• Extreme point iff BFS
• LP in orthant is optimized at BFS

Due to the last point above, we will focus on finding an optimal solution that is also a
BFS.

Lemma 2. Let B = [u1, u2, . . . , un] be a basis of a vector space V . Let w =
∑n

i=1 λiui.
Then B′ = B − {ur} ∪ {w} is a basis of V iff λr ̸= 0.

Proof. (See https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/
vector-spaces/basis/replace-vector.html.)

Lemma 3. For any matrix A, we have rank(A) = rank(AT ).

1.1 Notation

For any non-negative integer n, let [n] := {1, 2, . . . , n} (or [n] := [1, 2, . . . , n], depending
on the context).

Let v ∈ Rn and A ∈ Rm×n. Let i ∈ [m] and j ∈ [n]. Then the jth element of v is
denoted as vj or v[j]. The element of A in the ith row and jth column of A is denoted as
Ai,j or A[i, j]. A[∗, j] denotes the jth column of A and A[i, ∗] denotes the ith row of A.

1

https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/rank.html
https://sharmaeklavya2.github.io/theoremdep/
https://sharmaeklavya2.github.io/theoremdep/
https://sharmaeklavya2.github.io/theoremdep/nodes/convexity/polyhedra/bfs.html
https://sharmaeklavya2.github.io/theoremdep/nodes/convexity/extreme-point.html
https://sharmaeklavya2.github.io/theoremdep/nodes/convexity/polyhedra/extreme-point-iff-bfs.html
https://sharmaeklavya2.github.io/theoremdep/nodes/convexity/polyhedra/orth-lp.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/basis/replace-vector.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/basis/replace-vector.html


Let J = [j1, j2, . . . , jr] be a sequence of r integers in [n]. v[J ] is defined as the vector
[v[j1], v[j2], . . . , v[jn]]. A[∗, J ] is defined as the matrix whose kth column is A[∗, jk]. Let
K = [k1, k2, . . . , kq] be a sequence of q integers in [m]. Then A[K, ∗] is defined as the
matrix whose ith column is A[ki, ∗].

For matrices A ∈ Rm×n1 and B ∈ Rm×n2 , let C = [A,B] denote the matrix in
Rm×(n1+n2) where the first n1 columns in C are the columns of A and the last n2 columns
in C are the columns of B. We call C the horizontal concatenation of A and B. We can
similarly define horizontal concatenation of more than two matrices. We can similarly

define vertical concatenation of A and B, which we denote as

[
A
B

]
.

Definition 1. Let stdLP(A, b, c) denote this LP:

min
x≥0

cTx where Ax = b.

2 Bases

Consider this linear program:

min
x∈Rn

cTx where Ax = b and x ≥ 0.

Here A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Definition 2 (Basis). Let J be a sequence of m distinct numbers from [n]. Let B :=
A[∗, J ]. Then J is called a basis of the LP iff rank(B) = m. J is called a feasible basis
iff it is a basis and B−1b ≥ 0.

Let J be the increasing sequence of values of [n] that are not in J . Define solve(J)
as a vector x̂ ∈ Rn, where x̂[J ] = B−1b and x̂[J ] = 0.

The following two results show that to find an optimal BFS of the LP, we can find a
feasible basis J that minimizes cT solve(J), and then return solve(J).

Lemma 4. Let J be a feasible basis and x̂ = solve(J). Then x̂ is a BFS of the LP.

Proof. It’s trivial to see that x̂ ≥ 0. Let B = A[∗, J ] and N = A[∗, J ]. Then

Ax̂ = Bx̂[J ] +Nx̂[J ] = B(B−1b) = b.

Hence, x̂ is feasible for the LP.

Because we can rearrange variables and constraints, we can assume without loss of
generality that J = [m]. The equality constraints are tight, and their coefficient matrix
is A = [B,N ]. The non-negativity constraints {xj ≥ 0 : j ∈ J} are tight, and their
coefficient matrix is In[J, ∗] = [0, In−m], where Ik denotes the k-by-k identity matrix.
Hence, the rank of the coefficient matrix of tight constraints at x̂ is

rank

([
B N
0 In−m

])
= rank

([
B 0
0 In−m

])
= rank(B) + (n−m) = n.

The first equation follows from the fact that rank is unaffected by row operations. The
third equation follows from the fact that J is a basis. Since the coefficient matrix of tight
constraints of x̂ has rank n, x̂ is a BFS of the LP.

2



Lemma 5. Let x̂ be a BFS of the LP. Then there exists a feasible basis J such that
x̂ = solve(J).

Proof. Since x̂ is a BFS, there exist n linearly independent constraints that are tight at
x̂. m of these are the equality constraints, whose coefficient matrix is A. The rest are
inequality constraints. Let J be the indices of these n −m inequality constraints. This
implies x̂[J ] = 0. Since we can rearrange variables, assume without loss of generality that
J = [m+1,m+2, . . . , n]. The coefficient matrix of these constraints is In[J, ∗] = [0, In−m].

Let J = [m]. Let B = A[∗, J ] and N = A[∗, J ]. Then A = [B,N ]. Since x̂ is a BFS,
we get

n = rank

([
B N
0 In−m

])
= rank

([
B 0
0 In−m

])
= rank(B) + (n−m).

This implies that rank(B) = m, which shows that J is a basis of the LP.

Furthermore, since x̂ is feasible for the LP, we get that b = Ax̂ = Bx̂[J ] + Nx̂[J ] =
Bx̂[J ]. Hence, x̂[J ] = B−1b. Since x̂ is feasible for the LP, we get x̂ ≥ 0 =⇒ x̂[J ] ≥
0 =⇒ B−1b ≥ 0. Hence, J is a feasible basis and solve(J) = x̂.

3 The Simplex Algorithm

See Algorithm 1 for the description of the simplex algorithm. The input to the algorithm is
(A, b, c, J), where J is a feasible basis of Ax = b. The algorithm initializes a data structure
D using J (by calling the subroutine simplexInit), and then iteratively updates J and
the data structure D (by calling subroutines simplexMove and updateDS). Specifically,
if the status output by simplexMove is move, then it outputs a pair (k, r) of integers,
where k ∈ [n]− J and r ∈ [m]. It then sets the rth element of J to k. We say that J [r]
leaves the basis and k enters the basis.

Algorithm 1 simplex(A, b, c, J): A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and J is a feasible basis
for stdLP(A, b, c).

1: // contains some Python assignment syntax
2: D = simplexInit(A, b, c, J)
3: while true do
4: status, *outs = simplexMove(D, J)
5: // status can be optimal, unbounded, or move.
6: // outs is a list
7: if status == move then
8: (k, r, δ) = outs

9: J [r] = k
10: D = updateDS(D, J, k, r)
11: else
12: return (status, J, *outs)
13: end if
14: end while

There are different variants of the simplex algorithm, depending on what data struc-
ture D they maintain. We will look at 3 variants: naive simplex, tableau simplex, and

3

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements


revised simplex. In the naive simplex method, we set D := (A, b, c). Hence, simplexInit
and updateDS are trivial for naive simplex. The main advantage of tableau and revised
over naive is that they speed up simplexMove.

Definition 3. Let J := [j1, . . . , jm] be a basis of stdLP(A, b, c), where A ∈ Rm×n, and let
k ∈ [n] − J . Let B := A[∗, J ] and Y := B−1A. Then define direction(J, k) ∈ Rn as the
vector y where

yt =


−Y [i, k] if t = ji

1 if t = k

0 otherwise

.

The core of the simplex algorithm is simplexMove, which tells us how to move
from one basis to another. simplexMove is described in Algorithm 2. Specifically,
when simplexMove(D, J) outputs (move, k, r, δ), it moves from solve(J) to solve(J) +
δ direction(J, k) (we will prove this soon).

Algorithm 2 simplexMove(D, J): J is a feasible basis of stdLP(A, b, c).

1: Let B := A[∗, J ], Y := B−1A, b := B−1b, and z = Y T c[J ].
2: // We will lazily compute B, Y , b, and z using D.
3: if c− z ≥ 0 then
4: return (optimal, solve(J), c[J ]T b)
5: end if
6: Find k ∈ [n] such that ck − zk < 0.
7: if Y [∗, k] ≤ 0 then
8: return (unbounded, solve(J), direction(J, k), k)
9: end if

10: r = argmin
i∈[m]:Y [i,k]>0

bi
Y [i, k]

11: δ = br/Y [r, k]
12: return (move, k, r, δ).

Since simplexMove requires J to be a feasible basis of stdLP(A, b, c), and we’re chang-
ing J in line 9, we need to prove that after this change, J continues to be a feasible basis
of stdLP(A, b, c).

Theorem 6. If simplex outputs (optimal, J, x̂, β), then x̂ is a BFS of the LP and an
optimal solution to the LP. Furthermore, x̂ = solve(J) and β = cT x̂.

Proof sketch. For any feasible x, we can show that cTx = c[J ]T b+ (c− z)[J ]Tx[J ]. Since
c[J ]T b = cT x̂, x[J ] ≥ 0, and c− z ≥ 0, we get cTx ≥ cT x̂.

Proof. By line 4 of simplexMove, x̂ = solve(J) and β = c[J ]T b. Hence, x̂ is a BFS by
Lemma 4 and cT x̂ = β. Now we just need to prove that x̂ is optimal.

Let J = [n]− J . Let N = A[∗, J ]. Let xB = x[J ] and xN = x[J ]. Then

Ax = b ⇐⇒ BxB +NxN = b ⇐⇒ xB = b−B−1NxN .

4



Note that since the constraint xB = b−B−1NxN is equivalent to Ax = b, we can replace
Ax = b by xB = b−B−1NxN in the LP without affecting the set of feasible solutions.

We can use these new constraints to express the objective value as a function of xN .

cTx = c[J ]TxB + c[J ]TxN

= c[J ]T
(
b−B−1NxN

)
+ c[J ]TxN

= c[J ]T b+ (c[J ]T − c[J ]TB−1N)xN

z[J ]T = (c[J ]TY )[J ] = c[J ]TB−1A[∗, J ] = c[J ]TB−1N.

=⇒ cTx = c[J ]T b+ (c− z)[J ]TxN .

From the non-negativity constraints, we know that xN ≥ 0. We also know that c−z ≥ 0,
since simplexMove’s output status is optimal. Hence, for every feasible x, we have
cTx = c[J ]T b + (c − z)[J ]TxN ≥ c[J ]T b = cT x̂. Hence, x̂ is an optimal solution to the
LP.

Lemma 7. z[J ] = c[J ].

Proof. z[J ]T = c[J ]T (B−1A)[∗, J ] = c[J ]TB−1A[∗, J ] = c[J ]T .

Lemma 7 implies that k ̸∈ J , since ck − zk < 0.

Lemma 8. Y [∗, J ] = I. Let J = [j1, j2, . . . , jm]. Then Y [i, jp] =

{
1 if p = i

0 if p ̸= i
.

Proof.

Y [∗, J ] = (B−1A)[∗, J ] = B−1A[∗, J ] = B−1B = I.

Y [i, jp] = Y [∗, J ][i, p] = I[i, p] =

{
1 if p = i

0 if p ̸= i
.

Lemma 9. Let y = direction(J, k). Then Y y = Ay = 0.

Proof.

(Y y)i =
n∑

j=1

Y [i, j]yj =
m∑
p=1

Y [i, jp]yjp + Y [i, k]yk

= yji + Y [i, k]yk = −Y [i, k] + Y [i, k] = 0.

Ay = B−1Y y = B−10 = 0.

Lemma 10. Let y := direction(J, k). Then cTy = ck − zk.

Proof.

cTy =
n∑

j=1

cjyj = ckyk +
m∑
p=1

cjpyjp = ck −
m∑
p=1

cjpY [p, k]

= ck −
m∑
p=1

Y T [k, p]c[J ]p = ck − (Y T c[J ])k = ck − zk < 0.

5



Theorem 11. If simplex outputs (unbounded, J, x̂, y, k), then the LP’s cost reduces along
the ray {x̂+ λy : λ ≥ 0} and the ray is feasible, which implies that the LP is unbounded.
Furthermore, y ≥ 0, x̂ = solve(J), and y = direction(J, k).

Proof. By line Line 8 of simplexMove, we know that x̂ = solve(J) and y = direction(J, k).

By Lemma 9, we know that Ay = 0. Hence, A(x̂+λy) = Ax̂ = b. Since simplexMove
returned (unbounded, x̂, y, k), we get that Y [∗, k] ≤ 0 (by Line 7). Hence, y ≥ 0 and so
x̂+ λy ≥ x̂ ≥ 0. Hence, x̂+ λy is feasible for the LP for all λ ≥ 0.

By Lemma 10, we know that cTy = ck − zk < 0, Hence, moving along the ray will
reduce cost indefinitely. This implies that the LP is unbounded.

Lemma 12. Suppose simplexMove(D, J) outputs (move, k, r, δ). Let J̃ be the new se-

quence obtained by changing J [r] to k (at line 9 of simplex). Then J̃ is a basis of the
LP.

Proof. Let J = [j1, j2, . . . , jm]. The set of values in J̃ is J − {jr} ∪ {k}. Since k ̸∈ J , J̃
has distinct values.

Let aj be the jth column of A. Let B = A[∗, J ]. Let B̃ = A[∗, J̃ ]. Let S =

{aj1 , aj2 , . . . , ajm} be the set of columns of B and let S̃ = S − {ajr} ∪ {ak} be the set

of columns of B̃. Since J is a basis, rank(B) = m, so S is a set of linearly independent
vectors. Since |S| = m, we get that S is a basis of Rm. Hence, ak ∈ span(S).

Let ak =
∑m

i=1 λiaji . Let λ = [λ1, λ2, . . . , λm]. Then Bλ =
∑m

i=1 λiaji = ak. Hence,
λ = B−1ak = Y [∗, k]. Since Y [r, k] > 0, we get that λr > 0. Hence, by Lemma 2, we get

that S̃ is also a basis of Rm. Hence, rank(B̃) = m, so J̃ is a basis.

Lemma 13. Suppose simplexMove(D, J) outputs (move, k, r, δ). Let J̃ be the new se-

quence obtained by changing J [r] to k (at line 9 of simplex). Then J̃ is a feasible basis
of the LP. Furthermore, let y = direction(J, k), x̂ = solve(J), and x̃ = x̂ + δy. Then

x̃ = solve(J̃) and cT x̃ ≤ cT x̂.

Proof sketch. We can show that Ax̃ = b, x̃ ≥ 0, and x̃j = 0 when j ̸∈ J̃ . Let B̃ := A[∗, J̃ ].
Then b = Ax̃ = A[∗, J̃ ]x̃[J̃ ] = B̃x̃[J̃ ]. So, x̃[J̃ ] = B̃−1b, which implies x̃ = solve(J̃).
Also, cT (x̃− x̂) = δ(cTy) = δ(ck − zk) ≤ 0 by Lemma 10.

Proof. By Lemma 9, we get that Ay = 0. Hence, Ax̃ = Ax̂+ δ(Ay) = Ax̂ = b.

If i ̸∈ J or Y [i, k] ≤ 0, then yi ≥ 0, and hence x̃i = x̂i + δyi ≥ x̂i ≥ 0. Now let i ∈ J
and Y [i, k] > 0. Let J = [j1, j2, . . . , jm]. Then

δ =
br

Y [r, k]
≤ bi

Y [i, k]
.

=⇒ x̃ji = x̂ji + δyji = bi − δY [i, k] ≥ 0.

Hence, x̃ ≥ 0. Therefore, x̃ is feasible for the LP.

Let i ∈ [n]− J̃ . If i = jr, then

x̃i = x̂jr + δyjr = br − δY [r, k] = 0.

6



If i ∈ [n] − J − {k}, then x̃i = x̂i + δyi = 0 + δ0 = 0. Hence, x̃i = 0 when i ̸∈ J̃ . Let

B̃ := A[∗, J̃ ]. Then

b = Ax̃ = A[∗, J̃ ]x̃[J̃ ] = B̃x̃[J̃ ].

By Lemma 12, J̃ is a basis, so B̃ is invertible. Hence, x̃[J̃ ] = B̃−1b. Furthermore,

x̃[[n] − J̃ ] = 0, so x̃ = solve(J̃). Since x̃ ≥ 0, we get that B̃−1b ≥ 0. Hence, J̃ is a
feasible basis.

Also, cT (x̃− x̂) = δ(cTy) = δ(ck − zk) ≤ 0 by Lemma 10. Hence, cT x̃ ≤ cT x̂.

This completes the correctness of simplex.

4 Implementations of Simplex

The naive simplex method has a large running time of O(m2(m+n)) per iteration, since
we compute B−1, Y , b and z afresh in each iteration. We will now see how the tableau
method and the revised simplex method improve the running time per iteration.

In the Tableau method, the data structure D is[
c− z −c[J ]T b

Y b

]
,

where the rows are numbered from 0 instead of 1. In the Revised simplex method, the
data structure D is given by the pair (D1, D2), where D1 := (A, b, c) and

D2 :=

[
−c[J ]TB−1 −c[J ]T b

B−1 b

]
,

where the rows are numbered from 0 instead of 1. It is easy to see that we can quickly
compute Y , b, and c− z in simplexMove in both methods. simplexInit is implemented
in the obvious straightforward way. We will now see how to implement updateDS using
elementary row operations.

Definition 4 (pivoting). Let A ∈ Rm×n be a matrix, i ∈ [m], and j ∈ [n] such that
A[i, j] ̸= 0. Then pivoting is the operation of applying elementary row operations to A to

get a new matrix Â ∈ Rm×n such that Â[i, j] = 1 and Â[i′, j] = 0 for all i′ ∈ [m]− {i}.

In the tableau method, updateDS(D, J, k, r) is performed by pivoting D at (r, k). In
the revised simplex method, updateDS(D, J, k, r) is performed by horizontally concate-

nating the column

[
ck − zk
Y [∗, k]

]
to D2, (which becomes the (m + 2)th column), pivoting at

(r,m+ 2), and then discarding the (m+ 2)th column.

Let J be a feasible basis of the LP. Let B := A[∗, J ], Y := B−1A, b := B−1b and
z := Y T c[J ]. Based on how k and r are chosen, we know that ck−zk < 0, Y [r, k] > 0, and

r ∈ argmini∈[m]:Y [i,k]>0
bi

Y [i,k]
. Let J̃ be the sequence obtained by changing the rth element

of J to k. By Lemma 13, J̃ is a feasible basis. Let B̃ := A[∗, J̃ ], Ỹ := B̃−1A, b̃ := B̃−1b

and z̃ := Ỹ T c[J̃ ]. We will now see how to compute Ỹ , z̃ and b̃ from Y , z and b.

7



Define the matrix Ŷ as

Ŷ [i, j] =


Y [r, j]

Y [r, k]
if i = r

Y [i, j]− Y [i, k]

Y [r, k]
Y [r, j] if i ̸= r

.

Note that Ŷ is obtained from Y by pivoting on (r, k). Let R be the matrix of these row

operations. Then Ŷ = RY . We can find R by applying these row operations to the
m-by-m identity matrix.

R[i, j] =


I[r, j]

Y [r, k]
if i = r

I[i, j]− Y [i, k]

Y [r, k]
I[r, j] if i ̸= r

=



1

Y [r, k]
if i = r = j

−Y [i, k]

Y [r, k]
if i ̸= r ∧ j = r

1 if i ̸= r ∧ j = i

0 if j ̸∈ {i, r}

.

Lemma 14. B̃−1 = RB−1 and Ỹ = RY and b̃ = Rb.

Proof. Let J = [j1, j2, . . . , jm]. J̃ = J − {jr} ∪ {k}. By Lemma 8, we get that Y [∗, J ] =
Ỹ [∗, J̃ ] = I. We will try to show that Ŷ [∗, J̃ ] = I.

Let p, q ∈ [m]− {r}.

Ŷ [∗, J̃ ][r, r] = Ŷ [r, J̃ [r]] = Ŷ [r, k] = 1.

Ŷ [∗, J̃ ][r, q] = Ŷ [r, J̃ [q]] = Ŷ [r, jq] =
Y [r, jq]

Y [r, k]
= 0. (by Lemma 8)

Ŷ [∗, J̃ ][p, r] = Ŷ [p, J̃ [r]] = Ŷ [p, k] = Y [p, k]− Y [p, k]

Y [r, k]
Y [r, k] = 0.

Ŷ [∗, J̃ ][p, q] = Ŷ [p, J̃ [q]] = Ŷ [p, jq] = Y [p, jq]−
Y [p, k]

Y [r, k]
Y [r, jq] = Y [p, jq]

=

{
1 if p = q

0 otherwise
. (by Lemma 8)

Hence, Ŷ [∗, J̃ ] = I.

I = Ŷ [∗, J̃ ] = (RB−1A)[∗, J̃ ] = RB−1A[∗, J̃ ] = RB−1B̃.

Hence, B̃−1 = RB−1.

Ỹ = B̃−1A = RB−1A = RY.

b̃ = B̃−1b = RB−1b = Rb.

8



Define ẑ ∈ Rn and η as

ẑj = zj +
ck − zk
Y [r, k]

Y [r, j] η = c[J ]T b+
ck − zk
Y [r, k]

br.

Lemma 15. ẑ = z̃ and η = c[J̃ ]T b̃.

Proof. Let J = [j1, j2, . . . , jm]. Then J̃ = J − {jr} ∪ {k}. Let i ∈ [m]− {r}. Then

ẑ[J̃ ]i = ẑji = zji +
ck − zk
Y [r, k]

Y [r, ji] = zji .

By Lemma 8, we get Y [r, ji] = 0. By Lemma 7, we get zji = cji . Hence, ẑ[J̃ ]i = cji = c[J̃ ]i.

ẑ[J̃ ]r = ẑk = zk +
ck − zk
Y [r, k]

Y [r, k] = ck = c[J̃ ]r.

Hence, ẑ[J̃ ] = c[J̃ ].

Y [r, ∗] = (B−1A)[r, ∗] = B−1[r, ∗]A.

br = (B−1b)r = B−1[r, ∗]b.

Let α = (ck − zk)/Y [r, k]. Then

ẑT = zT + αY [r, ∗] = c[J ]TB−1A+ αB−1[r, ∗]A.

η = c[J ]T b+ αbr = c[J ]TB−1b+ αB−1[r, ∗]b.

Let uT = c[J ]TB−1 + αB−1[r, ∗]. Then ẑT = uTA and η = uT b.

c[J̃ ]T = ẑ[J̃ ]T = (uTA)[J̃ ] = uTA[∗, J̃ ] = uT B̃.

Hence, uT = c[J̃ ]T B̃−1. So, ẑ = c[J̃ ]T B̃−1A = c[J̃ ]T Ỹ = z̃ and η = c[J̃ ]T B̃−1b =

c[J̃ ]T b̃.

In the revised simplex method, we can obtain further speedup in simplexMove. Com-
pute c[J ]TB−1 by multiplying c[J ]T and B−1. Then we iterate over j ∈ [n] − J̃ , and

compute zj = (c[J ]TB−1)A[∗, j]. We stop iterating when we find a suitable k ∈ [n] − J̃

such that ck−zk < 0, or if cj−zj ≥ 0 for all j ∈ [n]−J̃ . Next, we compute u = B−1A[∗, k]
and b = B−1b. At the end of the iteration, we can update B−1 using row operations as
per Lemma 14. This is possible since R is defined by u.

The time taken is O(m(t + m)), where t is the number of variables that need to be
considered till we find k. Note that t ≤ n−m. The space complexity of revised simplex
(in addition to storing the input) is O(m2).

9



5 Duality

Definition 5 (Dual LP). The dual LP of stdLP(A, b, c) is defined to be the following LP:

max
w

bTw where ATw ≤ c.

We denote this LP as stdDLP(A, b, c).

Definition 6 (dual feasible basis). Let J be a basis of stdLP(A, b, c). J is called dual
feasible if c− z ≥ 0, where B := A[∗, J ] and zT := c[J ]TB−1A. Define dualSolve(J) as
(c[J ]TB−1)T . (Note that z = AT dualSolve(J)).

Lemma 16. Let J be a dual feasible basis and ŵ := dualSolve(J). Then ŵ is a BFS of
stdDLP(A, b, c).

Proof. AT [J, ∗]ŵ = BT (c[J ]TB−1)T = c[J ]. Hence, m constraints in ATw ≤ c are tight.
Furthermore, rank(AT [J, ∗]) = rank(B) = m, so the tight constraints have rank(m).
Hence, ŵ is a BFS of stdDLP(A, b, c).

Lemma 17. Let ŵ be a BFS of stdDLP(A, b, c). Then there exists a dual feasible basis
J of stdLP(A, b, c) such that ŵ = dualSolve(J).

Proof. Since ŵ is a BFS, it hasm linearly independent tight constraints in stdDLP(A, b, c).
Let J be the indices of those constraints. Then rank(A[∗, J ]) = m, so J is a ba-
sis. Furthermore, c[J ] = AT [J, ∗]ŵ, so ŵT = B−1c[J ]T , where B := A[∗, J ] Hence,
ŵ = dualSolve(J). J is also dual feasible, since c− z = c− AT ŵ ≥ 0.

Lemma 18. Let J be a basis of stdLP(A, b, c). Let x̂ := solve(J) and ŵ := dualSolve(J).
Then cT x̂ = bT ŵ = c[J ]T b. Furthermore, if J is both feasible and dual feasible, then x̂
and ŵ are optimal solutions to stdLP(A, b, c) and stdDLP(A, b, c), respectively.

Proof. Optimality of x̂ and ŵ follows from the weak duality theorem for LPs.

6 Properties of Solutions

Definition 7 (degeneracy). Let A ∈ Rm×n. Let J be a basis of stdLP(A, b, c). Let
B := A[∗, J ] and zT := c[J ]TB−1b.

• A solution x̂ to Ax = b is called degenerate for stdLP(A, b, c) if | support(x̂)| < m.

• ŵ ∈ Rm is called degenerate for stdDLP(A, b, c) if | support(c− ATw)| < n−m.

• J is called primal degenerate if (B−1b)i = 0 for some i ∈ [m].

• J is called dual degenerate if (c− z)j = 0 for some j ∈ [n]− J .

Lemma 19. Let J be a basis of stdLP(A, b, c). Then solve(J) is degenerate iff J is
primal degenerate, and dualSolve(J) is degenerate iff J is dual degenerate.

10



6.1 Multiple Bases for Same Point

Lemma 20. Let J1 and J2 be two bases of stdLP(A, b, c) such that sorted(J1) ̸= sorted(J2)
and x̂ := solve(J1) = solve(J2). Then x̂ is degenerate for stdLP(A, b, c).

Lemma 21. Let J1 and J2 be two bases of stdLP(A, b, c) such that sorted(J1) ̸= sorted(J2)
and ŵ := dualSolve(J1) = dualSolve(J2). Then ŵ is degenerate for stdDLP(A, b, c).

The converse of Lemmas 20 and 21 is not true.

Example 1. Let A =

[
1 0 0
0 1 0

]
, b = [0, 0]T , and c = [0, 0, 0]T . Then J = [0, 1] is the

unique basis (up to permutation) of stdLP(A, b, c). However, both solve(J) = [0, 0, 0]
and dualSolve(J) = [0, 0] are degenerate.

6.2 Degeneracy and Optimality

Lemma 22 (dual non-degen =⇒ unique primal opt). Let J be a dual feasible and dual
non-degenerate basis of stdLP(A, b, c). Let x̂ := solve(J). Let P be the set of feasible
solutions to stdLP(A, b, c). Then cT x̂ < minx∈P−{x̂} c

Tx. (Hence, if J is feasible, then x̂
is a unique optimum of stdLP(A, b, c).)

Proof sketch. For any x ∈ P , we can show that cTx = c[J ]T b + (c − z)[J ]Tx[J ]. Since
c[J ]T b = cT x̂, x[J ] ≥ 0, x[J ] ̸= 0 (since x ̸= x̂), and (c − z)[J ] > 0 (by dual feasibility
and dual non-degeneracy of J), we get cTx > cT x̂.

Lemma 23 (primal non-degen =⇒ unique dual opt). Let J be a primal feasible and pri-
mal non-degenerate basis of stdLP(A, b, c). Let ŵ := dualSolve(J) and x̂ := solve(J).
Let Q be the set of feasible solutions to stdDLP(A, b, c). Then bT ŵ > maxw∈Q−{ŵ} b

Tw.
(Hence, if J is dual feasible, then ŵ is a unique optimum of stdDLP(A, b, c).)

Proof. Let w ∈ Q − {ŵ}. So, cT − wTA ≥ 0. Suppose (cT − wTA)[J ] = 0. Then
wT = B−1c[J ] = ŵ, which is not possible. Hence, ∃j ∈ J such that cj − (wTA)j > 0.

We have bTw = wTAx̂ = (wTA)[J ]b and bT ŵ = c[J ]T b. Since J is feasible and primal
non-degenerate, b > 0. Hence, bT ŵ− bTw = (c[J ]−wTA)[J ]b ≥ (cj − (wTA)j)bj > 0.

Lemma 24 (primal non-degen and dual degen =⇒ non-unique primal opt). Let J
be a feasible basis of stdLP(A, b, c) that is primal non-degenerate and dual degenerate.
Let x̂ := solve(J). Then ∃ a feasible solution x̃ to stdLP(A, b, c) such that x̃ ̸= x̂ and
cT x̃ = ctx̂.

Proof sketch. Find k such that ck − zk = 0 and then try to pivot.

Proof. Since J is dual degenerate, ∃k ̸∈ J such that ck − zk = 0. Let d := direction(J, k).
Then Ad = 0 by Lemma 9 and cTd = ck − zk = 0 by Lemma 10. Since J is primal
non-degenerate, b > 0.

Pick ϵ > 0 such that bi ≥ ϵY [i, k]. Let x̃ := x̂ + ϵd. Then Ax̃ = b and cT x̃ = cT x̂.
For j ∈ J − {k}, x̃j = x̂j ≥ 0. x̃k = x̂k + ϵ > 0. Let J := [j1, . . . , jm]. Then
x̃[ji] = bi − ϵY [i, k] ≥ 0. Hence, x̃ ≥ 0. Hence, x̃ is feasible for stdLP(A, b, c).

11



Lemma 25 (primal degen and dual non-degen =⇒ non-unique dual opt). Let J be a
dual feasible basis of stdLP(A, b, c) that is primal degenerate and dual non-degenerate. Let
x̂ := solve(J) and ŵ := solve(J). Then ∃ a dual feasible solution w̃ to stdDLP(A, b, c)
such that w̃ ̸= ŵ and bT w̃ = btŵ.

Proof sketch. Find r such that br = 0 and then try to pivot.

Proof. Since J is primal degenerate, ∃r such that br = 0. Pick ϵ > 0 such that (c −
z)[J ]T + ϵY [r, J ] ≥ 0. This is possible since (c − z)[J ] > 0, since J is dual feasible and
dual non-degenerate. Let vT := B−1[r, ∗]. Let w̃ := ŵ − ϵv. vT b = B−1[r, ∗]b = br = 0.
Hence, w̃T b = ŵT b.

vTA = B−1[r, ∗]A = (B−1A)[r, ∗] = Y [r, ∗]. cT − w̃TA = cT − ŵTA + ϵvTA =
(c− z)T + ϵY [r, ∗]. Let J := [j1, . . . , jm]. Then (cT − w̃TA)[ji] = (c− z)[ji] + ϵY [r, ji]. By
Lemma 7, (c − z)[ji] = 0. By Lemma 8, Y [r, ji] ≥ 0. Hence, (cT − w̃TA)[J ] ≥ 0. Given
how we chose ϵ, we get (cT − w̃TA)[J ] ≥ 0. Hence, AT w̃ ≤ c. Hence, w̃ is feasible for
stdDLP(A, b, c).

Example 2. Let b = 0, c = (0, 0). Let J be any basis of stdLP(A, b, c) (|J | = 1). Let
x̂ := solve(J) and ŵ := dualSolve(J). b = B−1b = 0, so x̂ = (0, 0), which is feasible
for stdLP(A, b, c). ŵT = c[J ]TB−1 = 0, so ŵ = 0. c− AT ŵ = (0, 0), so ŵ is feasible for
stdDLP(A, b, c). Hence, J is primal feasible and dual feasible. Since b = 0, J is primal
degenerate. Since (c− AT ŵ)[J ] = 0, J is dual degenerate.

Let P and Q be the set of feasible solutions to the primal and dual LPs, respectively.
Since the objective function is 0 for both LPs, unique primal optimal solution exists iff
P = {(0, 0)}, and unique dual optimal solution exists iff Q = {0}.

• If A = [1, 1], then P = {(0, 0)} and Q = (−∞, 0].

• If A = [1,−1], then P = {(x, x) : x ≥ 0} and Q = {0}.

• If A = [1, 0], then P = {(0, y) : y ≥ 0} and Q = (−∞, 0].

Table 1: Unique primal optimum?

dual degen dual non-degen
primal degen depends yes

primal non-degen no yes

Table 2: Unique dual optimum?

dual degen dual non-degen
primal degen depends no

primal non-degen yes yes

12


	1 Preliminaries
	1.1 Notation

	2 Bases
	3 The Simplex Algorithm
	4 Implementations of Simplex
	5 Duality
	6 Properties of Solutions
	6.1 Multiple Bases for Same Point
	6.2 Degeneracy and Optimality


