The Simplex Method

Eklavya Sharma

This document describes the *simplex method* for solving linear programs.

1 Preliminaries

Theorem 1. Any linear programming problem can be reduced to the following problem (called a standard form linear program):

$$\min_{x \in \mathbb{R}^n} c^T x \text{ where } Ax = b \text{ and } x \ge 0.$$

Here $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

We will also assume without loss of generality that rank(A) = m.

Read the following concepts at TheoremDep (https://sharmaeklavya2.github.io/theoremdep/):

- Basic feasible solution (BFS)
- Extreme point of a convex set
- Extreme point iff BFS
- LP in orthant is optimized at BFS

Due to the last point above, we will focus on finding an optimal solution that is also a BFS.

Lemma 2. Let $B = [u_1, u_2, ..., u_n]$ be a basis of a vector space V. Let $w = \sum_{i=1}^n \lambda_i u_i$. Then $B' = B - \{u_r\} \cup \{w\}$ is a basis of V iff $\lambda_r \neq 0$.

 $\label{lem:proof:proof:seehttps://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/basis/replace-vector.html.) $$\Box$$

Lemma 3. For any matrix A, we have $rank(A) = rank(A^T)$.

1.1 Notation

For any non-negative integer n, let $[n] := \{1, 2, \dots, n\}$ (or $[n] := [1, 2, \dots, n]$, depending on the context).

Let $v \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$. Let $i \in [m]$ and $j \in [n]$. Then the j^{th} element of v is denoted as v_j or v[j]. The element of A in the i^{th} row and j^{th} column of A is denoted as $A_{i,j}$ or A[i,j]. A[*,j] denotes the j^{th} column of A and A[i,*] denotes the i^{th} row of A.

Let $J = [j_1, j_2, ..., j_r]$ be a sequence of r integers in [n]. v[J] is defined as the vector $[v[j_1], v[j_2], ..., v[j_n]]$. A[*, J] is defined as the matrix whose k^{th} column is $A[*, j_k]$. Let $K = [k_1, k_2, ..., k_q]$ be a sequence of q integers in [m]. Then A[K, *] is defined as the matrix whose i^{th} column is $A[k_i, *]$.

For matrices $A \in \mathbb{R}^{m \times n_1}$ and $B \in \mathbb{R}^{m \times n_2}$, let C = [A, B] denote the matrix in $\mathbb{R}^{m \times (n_1 + n_2)}$ where the first n_1 columns in C are the columns of A and the last n_2 columns in C are the columns of B. We call C the horizontal concatenation of A and B. We can similarly define horizontal concatenation of more than two matrices. We can similarly define vertical concatenation of A and B, which we denote as $\begin{bmatrix} A \\ B \end{bmatrix}$.

Definition 1. Let stdLP(A, b, c) denote this LP:

$$\min_{x \ge 0} c^T x \quad where \quad Ax = b.$$

2 Bases

Consider this linear program:

$$\min_{x \in \mathbb{R}^n} c^T x \text{ where } Ax = b \text{ and } x \ge 0.$$

Here $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

Definition 2 (Basis). Let J be a sequence of m distinct numbers from [n]. Let B := A[*, J]. Then J is called a basis of the LP iff rank(B) = m. J is called a feasible basis iff it is a basis and $B^{-1}b \ge 0$.

Let \overline{J} be the increasing sequence of values of [n] that are not in J. Define solve(J) as a vector $\widehat{x} \in \mathbb{R}^n$, where $\widehat{x}[J] = B^{-1}b$ and $\widehat{x}[\overline{J}] = 0$.

The following two results show that to find an optimal BFS of the LP, we can find a feasible basis J that minimizes $c^T \operatorname{solve}(J)$, and then return $\operatorname{solve}(J)$.

Lemma 4. Let J be a feasible basis and $\hat{x} = \text{solve}(J)$. Then \hat{x} is a BFS of the LP.

Proof. It's trivial to see that $\widehat{x} \geq 0$. Let B = A[*, J] and $N = A[*, \overline{J}]$. Then

$$A\widehat{x} = B\widehat{x}[J] + N\widehat{x}[\overline{J}] = B(B^{-1}b) = b.$$

Hence, \hat{x} is feasible for the LP.

Because we can rearrange variables and constraints, we can assume without loss of generality that J=[m]. The equality constraints are tight, and their coefficient matrix is A=[B,N]. The non-negativity constraints $\{x_j\geq 0: j\in \overline{J}\}$ are tight, and their coefficient matrix is $I_n[\overline{J},*]=[0,I_{n-m}]$, where I_k denotes the k-by-k identity matrix. Hence, the rank of the coefficient matrix of tight constraints at \widehat{x} is

$$\operatorname{rank}\left(\begin{bmatrix} B & N \\ 0 & I_{n-m} \end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix} B & 0 \\ 0 & I_{n-m} \end{bmatrix}\right) = \operatorname{rank}(B) + (n-m) = n.$$

The first equation follows from the fact that rank is unaffected by row operations. The third equation follows from the fact that J is a basis. Since the coefficient matrix of tight constraints of \hat{x} has rank n, \hat{x} is a BFS of the LP.

Lemma 5. Let \hat{x} be a BFS of the LP. Then there exists a feasible basis J such that $\hat{x} = \text{solve}(J)$.

Proof. Since \widehat{x} is a BFS, there exist n linearly independent constraints that are tight at \widehat{x} . m of these are the equality constraints, whose coefficient matrix is A. The rest are inequality constraints. Let \overline{J} be the indices of these n-m inequality constraints. This implies $\widehat{x}[\overline{J}] = 0$. Since we can rearrange variables, assume without loss of generality that $\overline{J} = [m+1, m+2, \ldots, n]$. The coefficient matrix of these constraints is $I_n[\overline{J}, *] = [0, I_{n-m}]$.

Let J=[m]. Let B=A[*,J] and N=A[*,J]. Then A=[B,N]. Since \widehat{x} is a BFS, we get

$$n = \operatorname{rank}\left(\begin{bmatrix} B & N \\ 0 & I_{n-m} \end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix} B & 0 \\ 0 & I_{n-m} \end{bmatrix}\right) = \operatorname{rank}(B) + (n-m).$$

This implies that rank(B) = m, which shows that J is a basis of the LP.

Furthermore, since \widehat{x} is feasible for the LP, we get that $b = A\widehat{x} = B\widehat{x}[J] + N\widehat{x}[\overline{J}] = B\widehat{x}[J]$. Hence, $\widehat{x}[J] = B^{-1}b$. Since \widehat{x} is feasible for the LP, we get $\widehat{x} \geq 0 \implies \widehat{x}[J] \geq 0 \implies B^{-1}b \geq 0$. Hence, J is a feasible basis and $\mathtt{solve}(J) = \widehat{x}$.

3 The Simplex Algorithm

See Algorithm 1 for the description of the simplex algorithm. The input to the algorithm is (A, b, c, J), where J is a feasible basis of Ax = b. The algorithm initializes a data structure D using J (by calling the subroutine simplexInit), and then iteratively updates J and the data structure D (by calling subroutines simplexMove and updateDS). Specifically, if the status output by simplexMove is move, then it outputs a pair (k, r) of integers, where $k \in [n] - J$ and $r \in [m]$. It then sets the r^{th} element of J to k. We say that J[r] leaves the basis and k enters the basis.

Algorithm 1 simplex(A, b, c, J): $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and J is a feasible basis for stdLP(A, b, c).

```
1: // contains some Python assignment syntax
2: D = simplexInit(A, b, c, J)
3: while true do
4:
       status, *outs = simplexMove(D, J)
       // status can be optimal, unbounded, or move.
5:
       // outs is a list
6:
       if status == move then
7:
           (k, r, \delta) = \text{outs}
8:
           J[r] = k
9:
           D = \mathtt{updateDS}(D, J, k, r)
10:
       else
11:
12:
           return (status, J, *outs)
13:
       end if
14: end while
```

There are different variants of the simplex algorithm, depending on what data structure D they maintain. We will look at 3 variants: naive simplex, tableau simplex, and

revised simplex. In the *naive simplex method*, we set D := (A, b, c). Hence, simplexInit and updateDS are trivial for naive simplex. The main advantage of tableau and revised over naive is that they speed up simplexMove.

Definition 3. Let $J := [j_1, \ldots, j_m]$ be a basis of stdLP(A, b, c), where $A \in \mathbb{R}^{m \times n}$, and let $k \in [n] - J$. Let B := A[*, J] and $Y := B^{-1}A$. Then define direction $(J, k) \in \mathbb{R}^n$ as the vector y where

$$y_t = \begin{cases} -Y[i,k] & \text{if } t = j_i \\ 1 & \text{if } t = k \\ 0 & \text{otherwise} \end{cases}.$$

The core of the simplex algorithm is simplexMove, which tells us how to move from one basis to another. simplexMove is described in Algorithm 2. Specifically, when simplexMove(D, J) outputs $(move, k, r, \delta)$, it moves from solve(J) to $solve(J) + \delta \operatorname{direction}(J, k)$ (we will prove this soon).

Algorithm 2 simplexMove(D, J): J is a feasible basis of stdLP(A, b, c).

```
1: Let B := A[*, J], Y := B^{-1}A, \bar{b} := B^{-1}b, \text{ and } z = Y^Tc[J].

2: // We will lazily compute B, Y, \bar{b}, \text{ and } z \text{ using } D.

3: if c - z \ge 0 then

4: return (optimal, solve(J), c[J]^T\bar{b})

5: end if

6: Find k \in [n] such that c_k - z_k < 0.

7: if Y[*, k] \le 0 then

8: return (unbounded, solve(J), direction(J, k), k)

9: end if

10: r = \underset{i \in [m]: Y[i,k] > 0}{\operatorname{argmin}} \frac{\bar{b}_i}{Y[i,k]}

11: \delta = \bar{b}_r/Y[r,k]

12: return (move, k, r, \delta).
```

Since simplexMove requires J to be a feasible basis of stdLP(A, b, c), and we're changing J in line 9, we need to prove that after this change, J continues to be a feasible basis of stdLP(A, b, c).

Theorem 6. If simplex outputs (optimal, J, \widehat{x}, β), then \widehat{x} is a BFS of the LP and an optimal solution to the LP. Furthermore, $\widehat{x} = \text{solve}(J)$ and $\beta = c^T \widehat{x}$.

Proof sketch. For any feasible
$$x$$
, we can show that $c^T x = c[J]^T \overline{b} + (c-z)[\overline{J}]^T x[\overline{J}]$. Since $c[J]^T \overline{b} = c^T \widehat{x}$, $x[\overline{J}] \ge 0$, and $c-z \ge 0$, we get $c^T x \ge c^T \widehat{x}$.

Proof. By line 4 of simplexMove, $\widehat{x} = \text{solve}(J)$ and $\beta = c[J]^T \overline{b}$. Hence, \widehat{x} is a BFS by Lemma 4 and $c^T \widehat{x} = \beta$. Now we just need to prove that \widehat{x} is optimal.

Let
$$\overline{J} = [n] - J$$
. Let $N = A[*, \overline{J}]$. Let $x_B = x[J]$ and $x_N = x[\overline{J}]$. Then

$$Ax = b \iff Bx_B + Nx_N = b \iff x_B = \overline{b} - B^{-1}Nx_N.$$

Note that since the constraint $x_B = \bar{b} - B^{-1}Nx_N$ is equivalent to Ax = b, we can replace Ax = b by $x_B = \bar{b} - B^{-1}Nx_N$ in the LP without affecting the set of feasible solutions.

We can use these new constraints to express the objective value as a function of x_N .

$$c^{T}x = c[J]^{T}x_{B} + c[\overline{J}]^{T}x_{N}$$

$$= c[J]^{T}(\overline{b} - B^{-1}Nx_{N}) + c[\overline{J}]^{T}x_{N}$$

$$= c[J]^{T}\overline{b} + (c[\overline{J}]^{T} - c[J]^{T}B^{-1}N)x_{N}$$

$$z[\overline{J}]^{T} = (c[J]^{T}Y)[\overline{J}] = c[J]^{T}B^{-1}A[*, \overline{J}] = c[J]^{T}B^{-1}N.$$

$$\implies c^{T}x = c[J]^{T}\overline{b} + (c - z)[\overline{J}]^{T}x_{N}.$$

From the non-negativity constraints, we know that $x_N \geq 0$. We also know that $c-z \geq 0$, since simplexMove's output status is optimal. Hence, for every feasible x, we have $c^T x = c[J]^T \overline{b} + (c-z)[\overline{J}]^T x_N \geq c[J]^T \overline{b} = c^T \widehat{x}$. Hence, \widehat{x} is an optimal solution to the LP.

Lemma 7. z[J] = c[J].

Proof.
$$z[J]^T = c[J]^T (B^{-1}A)[*, J] = c[J]^T B^{-1}A[*, J] = c[J]^T.$$

Lemma 7 implies that $k \notin J$, since $c_k - z_k < 0$.

Lemma 8.
$$Y[*, J] = I$$
. Let $J = [j_1, j_2, ..., j_m]$. Then $Y[i, j_p] = \begin{cases} 1 & \text{if } p = i \\ 0 & \text{if } p \neq i \end{cases}$.

Proof.

$$Y[*,J] = (B^{-1}A)[*,J] = B^{-1}A[*,J] = B^{-1}B = I.$$

$$Y[i,j_p] = Y[*,J][i,p] = I[i,p] = \begin{cases} 1 & \text{if } p = i \\ 0 & \text{if } p \neq i \end{cases}.$$

Lemma 9. Let $y = \operatorname{direction}(J, k)$. Then Yy = Ay = 0.

Proof.

$$(Yy)_i = \sum_{j=1}^n Y[i,j]y_j = \sum_{p=1}^m Y[i,j_p]y_{j_p} + Y[i,k]y_k$$

= $y_{j_i} + Y[i,k]y_k = -Y[i,k] + Y[i,k] = 0.$
$$Ay = B^{-1}Yy = B^{-1}0 = 0.$$

Lemma 10. Let $y := \operatorname{direction}(J, k)$. Then $c^T y = c_k - z_k$.

Proof.

$$c^{T}y = \sum_{j=1}^{n} c_{j}y_{j} = c_{k}y_{k} + \sum_{p=1}^{m} c_{j_{p}}y_{j_{p}} = c_{k} - \sum_{p=1}^{m} c_{j_{p}}Y[p, k]$$

$$= c_{k} - \sum_{p=1}^{m} Y^{T}[k, p]c[J]_{p} = c_{k} - (Y^{T}c[J])_{k} = c_{k} - z_{k} < 0.$$

Theorem 11. If simplex outputs (unbounded, J, \hat{x} , y, k), then the LP's cost reduces along the ray $\{\hat{x} + \lambda y : \lambda \geq 0\}$ and the ray is feasible, which implies that the LP is unbounded. Furthermore, $y \geq 0$, $\hat{x} = \text{solve}(J)$, and y = direction(J, k).

Proof. By line Line 8 of simplexMove, we know that $\hat{x} = \text{solve}(J)$ and y = direction(J, k).

By Lemma 9, we know that Ay = 0. Hence, $A(\widehat{x} + \lambda y) = A\widehat{x} = b$. Since simplexMove returned (unbounded, \widehat{x}, y, k), we get that $Y[*, k] \leq 0$ (by Line 7). Hence, $y \geq 0$ and so $\widehat{x} + \lambda y \geq \widehat{x} \geq 0$. Hence, $\widehat{x} + \lambda y$ is feasible for the LP for all $\lambda \geq 0$.

By Lemma 10, we know that $c^T y = c_k - z_k < 0$, Hence, moving along the ray will reduce cost indefinitely. This implies that the LP is unbounded.

Lemma 12. Suppose simplexMove(D,J) outputs (move, k,r,δ). Let \widetilde{J} be the new sequence obtained by changing J[r] to k (at line g of simplex). Then \widetilde{J} is a basis of the LP.

Proof. Let $J = [j_1, j_2, \dots, j_m]$. The set of values in \widetilde{J} is $J - \{j_r\} \cup \{k\}$. Since $k \notin J$, \widetilde{J} has distinct values.

Let a_j be the j^{th} column of A. Let B = A[*, J]. Let $\widetilde{B} = A[*, \widetilde{J}]$. Let $S = \{a_{j_1}, a_{j_2}, \ldots, a_{j_m}\}$ be the set of columns of B and let $\widetilde{S} = S - \{a_{j_r}\} \cup \{a_k\}$ be the set of columns of \widetilde{B} . Since J is a basis, $\operatorname{rank}(B) = m$, so S is a set of linearly independent vectors. Since |S| = m, we get that S is a basis of \mathbb{R}^m . Hence, $a_k \in \operatorname{span}(S)$.

Let $a_k = \sum_{i=1}^m \lambda_i a_{j_i}$. Let $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_m]$. Then $B\lambda = \sum_{i=1}^m \lambda_i a_{j_i} = a_k$. Hence, $\lambda = B^{-1}a_k = Y[*,k]$. Since Y[r,k] > 0, we get that $\lambda_r > 0$. Hence, by Lemma 2, we get that \widetilde{S} is also a basis of \mathbb{R}^m . Hence, rank $(\widetilde{B}) = m$, so \widetilde{J} is a basis.

Lemma 13. Suppose $\operatorname{simplexMove}(D,J)$ outputs $(\operatorname{move},k,r,\delta)$. Let \widetilde{J} be the new sequence obtained by changing J[r] to k (at line ${\bf 9}$ of $\operatorname{simplex}$). Then \widetilde{J} is a feasible basis of the LP. Furthermore, let $y=\operatorname{direction}(J,k)$, $\widehat{x}=\operatorname{solve}(J)$, and $\widetilde{x}=\widehat{x}+\delta y$. Then $\widetilde{x}=\operatorname{solve}(\widetilde{J})$ and $c^T\widetilde{x}< c^T\widehat{x}$.

Proof sketch. We can show that $A\widetilde{x} = b$, $\widetilde{x} \geq 0$, and $\widetilde{x}_j = 0$ when $j \notin \widetilde{J}$. Let $\widetilde{B} := A[*, \widetilde{J}]$. Then $b = A\widetilde{x} = A[*, \widetilde{J}]\widetilde{x}[\widetilde{J}] = \widetilde{B}\widetilde{x}[\widetilde{J}]$. So, $\widetilde{x}[\widetilde{J}] = \widetilde{B}^{-1}b$, which implies $\widetilde{x} = \mathsf{solve}(\widetilde{J})$. Also, $c^T(\widetilde{x} - \widehat{x}) = \delta(c^Ty) = \delta(c_k - z_k) \leq 0$ by Lemma 10.

Proof. By Lemma 9, we get that Ay = 0. Hence, $A\widetilde{x} = A\widehat{x} + \delta(Ay) = A\widehat{x} = b$.

If $i \notin J$ or $Y[i,k] \leq 0$, then $y_i \geq 0$, and hence $\widetilde{x}_i = \widehat{x}_i + \delta y_i \geq \widehat{x}_i \geq 0$. Now let $i \in J$ and Y[i,k] > 0. Let $J = [j_1, j_2, \dots, j_m]$. Then

$$\delta = \frac{\overline{b}_r}{Y[r,k]} \le \frac{\overline{b}_i}{Y[i,k]}.$$

$$\implies \widetilde{x}_{j_i} = \widehat{x}_{j_i} + \delta y_{j_i} = \overline{b}_i - \delta Y[i, k] \ge 0.$$

Hence, $\widetilde{x} \geq 0$. Therefore, \widetilde{x} is feasible for the LP.

Let
$$i \in [n] - \widetilde{J}$$
. If $i = j_r$, then

$$\widetilde{x}_i = \widehat{x}_{j_r} + \delta y_{j_r} = \overline{b}_r - \delta Y[r, k] = 0.$$

If $i \in [n] - J - \{k\}$, then $\widetilde{x}_i = \widehat{x}_i + \delta y_i = 0 + \delta 0 = 0$. Hence, $\widetilde{x}_i = 0$ when $i \notin \widetilde{J}$. Let $\widetilde{B} := A[*, \widetilde{J}]$. Then

$$b = A\widetilde{x} = A[*, \widetilde{J}]\widetilde{x}[\widetilde{J}] = \widetilde{B}\widetilde{x}[\widetilde{J}].$$

By Lemma 12, \widetilde{J} is a basis, so \widetilde{B} is invertible. Hence, $\widetilde{x}[\widetilde{J}] = \widetilde{B}^{-1}b$. Furthermore, $\widetilde{x}[[n] - \widetilde{J}] = 0$, so $\widetilde{x} = \mathtt{solve}(\widetilde{J})$. Since $\widetilde{x} \geq 0$, we get that $\widetilde{B}^{-1}b \geq 0$. Hence, \widetilde{J} is a feasible basis.

Also,
$$c^T(\widetilde{x} - \widehat{x}) = \delta(c^T y) = \delta(c_k - z_k) \le 0$$
 by Lemma 10. Hence, $c^T \widetilde{x} \le c^T \widehat{x}$.

This completes the correctness of simplex.

4 Implementations of Simplex

The naive simplex method has a large running time of $O(m^2(m+n))$ per iteration, since we compute B^{-1} , Y, \bar{b} and z afresh in each iteration. We will now see how the tableau method and the revised simplex method improve the running time per iteration.

In the Tableau method, the data structure D is

$$\begin{bmatrix} c - z & -c[J]^T \overline{b} \\ Y & \overline{b} \end{bmatrix},$$

where the rows are numbered from 0 instead of 1. In the Revised simplex method, the data structure D is given by the pair (D_1, D_2) , where $D_1 := (A, b, c)$ and

$$D_2 := \begin{bmatrix} -c[J]^T B^{-1} & -c[J]^T \overline{b} \\ B^{-1} & \overline{b} \end{bmatrix},$$

where the rows are numbered from 0 instead of 1. It is easy to see that we can quickly compute Y, \bar{b} , and c-z in simplexMove in both methods. simplexInit is implemented in the obvious straightforward way. We will now see how to implement updateDS using elementary row operations.

Definition 4 (pivoting). Let $A \in \mathbb{R}^{m \times n}$ be a matrix, $i \in [m]$, and $j \in [n]$ such that $A[i,j] \neq 0$. Then pivoting is the operation of applying elementary row operations to A to get a new matrix $\widehat{A} \in \mathbb{R}^{m \times n}$ such that $\widehat{A}[i,j] = 1$ and $\widehat{A}[i',j] = 0$ for all $i' \in [m] - \{i\}$.

In the tableau method, updateDS(D,J,k,r) is performed by pivoting D at (r,k). In the revised simplex method, updateDS(D,J,k,r) is performed by horizontally concatenating the column $\begin{bmatrix} c_k - z_k \\ Y[*,k] \end{bmatrix}$ to D_2 , (which becomes the $(m+2)^{\text{th}}$ column), pivoting at (r,m+2), and then discarding the $(m+2)^{\text{th}}$ column.

Let J be a feasible basis of the LP. Let $B:=A[*,J], \ Y:=B^{-1}A, \ \bar{b}:=B^{-1}b$ and $z:=Y^Tc[J]$. Based on how k and r are chosen, we know that $c_k-z_k<0, \ Y[r,k]>0$, and $r\in \operatorname{argmin}_{i\in[m]:Y[i,k]>0}\frac{\bar{b}_i}{Y[i,k]}$. Let \widetilde{J} be the sequence obtained by changing the r^{th} element of J to k. By Lemma 13, \widetilde{J} is a feasible basis. Let $\widetilde{B}:=A[*,\widetilde{J}], \ \widetilde{Y}:=\widetilde{B}^{-1}A, \ \overline{\widetilde{b}}:=\widetilde{B}^{-1}b$ and $\widetilde{z}:=\widetilde{Y}^Tc[\widetilde{J}]$. We will now see how to compute $\widetilde{Y}, \ \widetilde{z}$ and \overline{b} from Y, z and \overline{b} .

Define the matrix \widehat{Y} as

$$\widehat{Y}[i,j] = \begin{cases} \frac{Y[r,j]}{Y[r,k]} & \text{if } i = r \\ \\ Y[i,j] - \frac{Y[i,k]}{Y[r,k]} Y[r,j] & \text{if } i \neq r \end{cases}.$$

Note that \widehat{Y} is obtained from Y by pivoting on (r, k). Let R be the matrix of these row operations. Then $\widehat{Y} = RY$. We can find R by applying these row operations to the m-by-m identity matrix.

$$R[i,j] = \begin{cases} \frac{I[r,j]}{Y[r,k]} & \text{if } i = r \\ I[i,j] - \frac{Y[i,k]}{Y[r,k]} I[r,j] & \text{if } i \neq r \end{cases}$$

$$= \begin{cases} \frac{1}{Y[r,k]} & \text{if } i = r = j \\ -\frac{Y[i,k]}{Y[r,k]} & \text{if } i \neq r \land j = r \\ 1 & \text{if } i \neq r \land j = i \\ 0 & \text{if } j \notin \{i,r\} \end{cases}$$

Lemma 14. $\widetilde{B}^{-1} = RB^{-1}$ and $\widetilde{Y} = RY$ and $\overline{\widetilde{b}} = R\overline{b}$.

Proof. Let $J=[j_1,j_2,\ldots,j_m]$. $\widetilde{J}=J-\{j_r\}\cup\{k\}$. By Lemma 8, we get that $Y[*,J]=\widetilde{Y}[*,\widetilde{J}]=I$. We will try to show that $\widehat{Y}[*,\widetilde{J}]=I$.

Let
$$p, q \in [m] - \{r\}$$
.

$$\widehat{Y}[*,\widetilde{J}][r,r] = \widehat{Y}[r,\widetilde{J}[r]] = \widehat{Y}[r,k] = 1.$$

$$\widehat{Y}[*,\widetilde{J}][r,q] = \widehat{Y}[r,\widetilde{J}[q]] = \widehat{Y}[r,j_q] = \frac{Y[r,j_q]}{Y[r,k]} = 0.$$
 (by Lemma 8)

$$\widehat{Y}[*,\widetilde{J}][p,r] = \widehat{Y}[p,\widetilde{J}[r]] = \widehat{Y}[p,k] = Y[p,k] - \frac{Y[p,k]}{Y[r,k]}Y[r,k] = 0.$$

$$\begin{split} \widehat{Y}[*,\widetilde{J}][p,q] &= \widehat{Y}[p,\widetilde{J}[q]] = \widehat{Y}[p,j_q] = Y[p,j_q] - \frac{Y[p,k]}{Y[r,k]}Y[r,j_q] = Y[p,j_q] \\ &= \begin{cases} 1 & \text{if } p = q \\ 0 & \text{otherwise} \end{cases}. \end{split} \tag{by Lemma 8}$$

Hence, $\widehat{Y}[*,\widetilde{J}] = I$.

$$I = \widehat{Y}[*, \widetilde{J}] = (RB^{-1}A)[*, \widetilde{J}] = RB^{-1}A[*, \widetilde{J}] = RB^{-1}\widetilde{B}.$$

Hence, $\widetilde{B}^{-1} = RB^{-1}$

$$\widetilde{Y} = \widetilde{B}^{-1}A = RB^{-1}A = RY.$$

$$\overline{\tilde{b}} = \widetilde{B}^{-1}b = RB^{-1}b = R\overline{b}.$$

Define $\widehat{z} \in \mathbb{R}^n$ and η as

$$\widehat{z}_j = z_j + \frac{c_k - z_k}{Y[r, k]} Y[r, j] \qquad \qquad \eta = c[J]^T \overline{b} + \frac{c_k - z_k}{Y[r, k]} \overline{b}_r.$$

Lemma 15. $\hat{z} = \tilde{z}$ and $\eta = c[\tilde{J}]^T \bar{\tilde{b}}$.

Proof. Let $J = [j_1, j_2, \dots, j_m]$. Then $\widetilde{J} = J - \{j_r\} \cup \{k\}$. Let $i \in [m] - \{r\}$. Then

$$\widehat{z}[\widetilde{J}]_i = \widehat{z}_{j_i} = z_{j_i} + \frac{c_k - z_k}{Y[r, k]} Y[r, j_i] = z_{j_i}.$$

By Lemma 8, we get $Y[r,j_i]=0$. By Lemma 7, we get $z_{j_i}=c_{j_i}$. Hence, $\widehat{z}[\widetilde{J}]_i=c_{j_i}=c[\widetilde{J}]_i$.

$$\widehat{z}[\widetilde{J}]_r = \widehat{z}_k = z_k + \frac{c_k - z_k}{Y[r, k]} Y[r, k] = c_k = c[\widetilde{J}]_r.$$

Hence, $\widehat{z}[\widetilde{J}] = c[\widetilde{J}].$

$$Y[r,*] = (B^{-1}A)[r,*] = B^{-1}[r,*]A.$$

$$\bar{b}_r = (B^{-1}b)_r = B^{-1}[r, *]b.$$

Let $\alpha = (c_k - z_k)/Y[r, k]$. Then

$$\widehat{z}^T = z^T + \alpha Y[r,*] = c[J]^T B^{-1} A + \alpha B^{-1}[r,*] A.$$

$$\eta = c[J]^T \overline{b} + \alpha \overline{b}_r = c[J]^T B^{-1} b + \alpha B^{-1}[r, *]b.$$

Let $u^T = c[J]^T B^{-1} + \alpha B^{-1}[r, *]$. Then $\widehat{z}^T = u^T A$ and $\eta = u^T b$.

$$c[\widetilde{J}]^T = \widehat{z}[\widetilde{J}]^T = (u^T A)[\widetilde{J}] = u^T A[*, \widetilde{J}] = u^T \widetilde{B}.$$

Hence,
$$u^T = c[\widetilde{J}]^T \widetilde{B}^{-1}$$
. So, $\widehat{z} = c[\widetilde{J}]^T \widetilde{B}^{-1} A = c[\widetilde{J}]^T \widetilde{Y} = \widetilde{z}$ and $\eta = c[\widetilde{J}]^T \widetilde{B}^{-1} b = c[\widetilde{J}]^T \overline{\widetilde{b}}$.

In the revised simplex method, we can obtain further speedup in simplexMove. Compute $c[J]^TB^{-1}$ by multiplying $c[J]^T$ and B^{-1} . Then we iterate over $j \in [n] - \widetilde{J}$, and compute $z_j = (c[J]^TB^{-1})A[*,j]$. We stop iterating when we find a suitable $k \in [n] - \widetilde{J}$ such that $c_k - z_k < 0$, or if $c_j - z_j \ge 0$ for all $j \in [n] - \widetilde{J}$. Next, we compute $u = B^{-1}A[*,k]$ and $\overline{b} = B^{-1}b$. At the end of the iteration, we can update B^{-1} using row operations as per Lemma 14. This is possible since R is defined by u.

The time taken is O(m(t+m)), where t is the number of variables that need to be considered till we find k. Note that $t \leq n-m$. The space complexity of revised simplex (in addition to storing the input) is $O(m^2)$.

5 Duality

Definition 5 (Dual LP). The dual LP of stdLP(A, b, c) is defined to be the following LP:

$$\max_{w} b^T w \quad where \quad A^T w \leq c.$$

We denote this LP as stdDLP(A, b, c).

Definition 6 (dual feasible basis). Let J be a basis of $\operatorname{stdLP}(A,b,c)$. J is called dual feasible if $c-z \geq 0$, where B := A[*,J] and $z^T := c[J]^T B^{-1} A$. Define $\operatorname{dualSolve}(J)$ as $(c[J]^T B^{-1})^T$. (Note that $z = A^T \operatorname{dualSolve}(J)$).

Lemma 16. Let J be a dual feasible basis and $\widehat{w} := \text{dualSolve}(J)$. Then \widehat{w} is a BFS of stdDLP(A, b, c).

Proof. $A^T[J,*]\widehat{w} = B^T(c[J]^TB^{-1})^T = c[J]$. Hence, m constraints in $A^Tw \leq c$ are tight. Furthermore, $\operatorname{rank}(A^T[J,*]) = \operatorname{rank}(B) = m$, so the tight constraints have $\operatorname{rank}(m)$. Hence, \widehat{w} is a BFS of $\operatorname{stdDLP}(A,b,c)$.

Lemma 17. Let \widehat{w} be a BFS of stdDLP(A, b, c). Then there exists a dual feasible basis J of stdLP(A, b, c) such that $\widehat{w} = \mathtt{dualSolve}(J)$.

Proof. Since \widehat{w} is a BFS, it has m linearly independent tight constraints in stdDLP(A,b,c). Let J be the indices of those constraints. Then $\operatorname{rank}(A[*,J])=m$, so J is a basis. Furthermore, $c[J]=A^T[J,*]\widehat{w}$, so $\widehat{w}^T=B^{-1}c[J]^T$, where B:=A[*,J] Hence, $\widehat{w}=\operatorname{dualSolve}(J)$. J is also dual feasible, since $c-z=c-A^T\widehat{w}\geq 0$.

Lemma 18. Let J be a basis of $\operatorname{stdLP}(A,b,c)$. Let $\widehat{x} := \operatorname{solve}(J)$ and $\widehat{w} := \operatorname{dualSolve}(J)$. Then $c^T\widehat{x} = b^T\widehat{w} = c[J]^T\overline{b}$. Furthermore, if J is both feasible and dual feasible, then \widehat{x} and \widehat{w} are optimal solutions to $\operatorname{stdLP}(A,b,c)$ and $\operatorname{stdDLP}(A,b,c)$, respectively.

Proof. Optimality of \hat{x} and \hat{w} follows from the weak duality theorem for LPs.

6 Properties of Solutions

Definition 7 (degeneracy). Let $A \in \mathbb{R}^{m \times n}$. Let J be a basis of $\operatorname{stdLP}(A, b, c)$. Let B := A[*, J] and $z^T := c[J]^T B^{-1} b$.

- A solution \hat{x} to Ax = b is called degenerate for stdLP(A, b, c) if $|support(\hat{x})| < m$.
- $\widehat{w} \in \mathbb{R}^m$ is called degenerate for $\operatorname{stdDLP}(A, b, c)$ if $|\operatorname{support}(c A^T w)| < n m$.
- *J* is called primal degenerate if $(B^{-1}b)_i = 0$ for some $i \in [m]$.
- *J* is called dual degenerate if $(c-z)_j = 0$ for some $j \in [n] J$.

Lemma 19. Let J be a basis of stdLP(A, b, c). Then solve(J) is degenerate iff J is primal degenerate, and dualSolve(J) is degenerate iff J is dual degenerate.

6.1 Multiple Bases for Same Point

Lemma 20. Let J_1 and J_2 be two bases of $\operatorname{stdLP}(A,b,c)$ such that $\operatorname{sorted}(J_1) \neq \operatorname{sorted}(J_2)$ and $\widehat{x} := \operatorname{solve}(J_1) = \operatorname{solve}(J_2)$. Then \widehat{x} is degenerate for $\operatorname{stdLP}(A,b,c)$.

Lemma 21. Let J_1 and J_2 be two bases of $\operatorname{stdLP}(A,b,c)$ such that $\operatorname{sorted}(J_1) \neq \operatorname{sorted}(J_2)$ and $\widehat{w} := \operatorname{dualSolve}(J_1) = \operatorname{dualSolve}(J_2)$. Then \widehat{w} is degenerate for $\operatorname{stdDLP}(A,b,c)$.

The converse of Lemmas 20 and 21 is not true.

Example 1. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $b = [0,0]^T$, and $c = [0,0,0]^T$. Then J = [0,1] is the unique basis (up to permutation) of $\operatorname{stdLP}(A,b,c)$. However, both $\operatorname{solve}(J) = [0,0,0]$ and $\operatorname{dualSolve}(J) = [0,0]$ are degenerate.

6.2 Degeneracy and Optimality

Lemma 22 (dual non-degen \Longrightarrow unique primal opt). Let J be a dual feasible and dual non-degenerate basis of $\operatorname{stdLP}(A,b,c)$. Let $\widehat{x} := \operatorname{solve}(J)$. Let P be the set of feasible solutions to $\operatorname{stdLP}(A,b,c)$. Then $c^T\widehat{x} < \min_{x \in P - \{\widehat{x}\}} c^T x$. (Hence, if J is feasible, then \widehat{x} is a unique optimum of $\operatorname{stdLP}(A,b,c)$.)

Proof sketch. For any $x \in P$, we can show that $c^T x = c[J]^T \overline{b} + (c - z)[\overline{J}]^T x[\overline{J}]$. Since $c[J]^T \overline{b} = c^T \widehat{x}$, $x[\overline{J}] \ge 0$, $x[\overline{J}] \ne 0$ (since $x \ne \widehat{x}$), and $(c - z)[\overline{J}] > 0$ (by dual feasibility and dual non-degeneracy of J), we get $c^T x > c^T \widehat{x}$.

Lemma 23 (primal non-degen \Longrightarrow unique dual opt). Let J be a primal feasible and primal non-degenerate basis of $\operatorname{stdLP}(A,b,c)$. Let $\widehat{w} := \operatorname{dualSolve}(J)$ and $\widehat{x} := \operatorname{solve}(J)$. Let Q be the set of feasible solutions to $\operatorname{stdDLP}(A,b,c)$. Then $b^T\widehat{w} > \max_{w \in Q - \{\widehat{w}\}} b^T w$. (Hence, if J is dual feasible, then \widehat{w} is a unique optimum of $\operatorname{stdDLP}(A,b,c)$.)

Proof. Let $w \in Q - \{\widehat{w}\}$. So, $c^T - w^T A \ge 0$. Suppose $(c^T - w^T A)[J] = 0$. Then $w^T = B^{-1}c[J] = \widehat{w}$, which is not possible. Hence, $\exists j \in J$ such that $c_j - (w^T A)_j > 0$.

We have $b^Tw = w^TA\widehat{x} = (w^TA)[J]\overline{b}$ and $b^T\widehat{w} = c[J]^T\overline{b}$. Since J is feasible and primal non-degenerate, $\overline{b} > 0$. Hence, $b^T\widehat{w} - b^Tw = (c[J] - w^TA)[J]\overline{b} \ge (c_j - (w^TA)_j)\overline{b}_j > 0$. \square

Lemma 24 (primal non-degen and dual degen \Longrightarrow non-unique primal opt). Let J be a feasible basis of $\operatorname{stdLP}(A,b,c)$ that is primal non-degenerate and dual degenerate. Let $\widehat{x} := \operatorname{solve}(J)$. Then \exists a feasible solution \widetilde{x} to $\operatorname{stdLP}(A,b,c)$ such that $\widetilde{x} \neq \widehat{x}$ and $c^T \widetilde{x} = c^t \widehat{x}$.

Proof sketch. Find k such that $c_k - z_k = 0$ and then try to pivot.

Proof. Since J is dual degenerate, $\exists k \notin J$ such that $c_k - z_k = 0$. Let $d := \operatorname{direction}(J, k)$. Then Ad = 0 by Lemma 9 and $c^T d = c_k - z_k = 0$ by Lemma 10. Since J is primal non-degenerate, $\bar{b} > 0$.

Pick $\epsilon > 0$ such that $\bar{b}_i \geq \epsilon Y[i,k]$. Let $\tilde{x} := \hat{x} + \epsilon d$. Then $A\tilde{x} = b$ and $c^T \tilde{x} = c^T \hat{x}$. For $j \in \overline{J} - \{k\}$, $\tilde{x}_j = \hat{x}_j \geq 0$. $\tilde{x}_k = \hat{x}_k + \epsilon > 0$. Let $J := [j_1, \dots, j_m]$. Then $\tilde{x}[j_i] = \bar{b}_i - \epsilon Y[i,k] \geq 0$. Hence, $\tilde{x} \geq 0$. Hence, \tilde{x} is feasible for stdLP(A,b,c).

Lemma 25 (primal degen and dual non-degen \Longrightarrow non-unique dual opt). Let J be a dual feasible basis of $\operatorname{stdLP}(A,b,c)$ that is primal degenerate and dual non-degenerate. Let $\widehat{x} := \operatorname{solve}(J)$ and $\widehat{w} := \operatorname{solve}(J)$. Then \exists a dual feasible solution \widetilde{w} to $\operatorname{stdDLP}(A,b,c)$ such that $\widetilde{w} \neq \widehat{w}$ and $b^T \widetilde{w} = b^t \widehat{w}$.

Proof sketch. Find r such that $\bar{b}_r = 0$ and then try to pivot.

Proof. Since J is primal degenerate, $\exists r$ such that $\bar{b}_r = 0$. Pick $\epsilon > 0$ such that $(c - z)[\overline{J}]^T + \epsilon Y[r, \overline{J}] \geq 0$. This is possible since $(c - z)[\overline{J}] > 0$, since J is dual feasible and dual non-degenerate. Let $v^T := B^{-1}[r, *]$. Let $\widetilde{w} := \widehat{w} - \epsilon v$. $v^T b = B^{-1}[r, *]b = \overline{b}_r = 0$. Hence, $\widetilde{w}^T b = \widehat{w}^T b$.

 $v^TA = B^{-1}[r,*]A = (B^{-1}A)[r,*] = Y[r,*]. \quad c^T - \widetilde{w}^TA = c^T - \widehat{w}^TA + \epsilon v^TA = (c-z)^T + \epsilon Y[r,*]. \text{ Let } J := [j_1,\ldots,j_m]. \text{ Then } (c^T - \widetilde{w}^TA)[j_i] = (c-z)[j_i] + \epsilon Y[r,j_i]. \text{ By Lemma } 7, \ (c-z)[j_i] = 0. \text{ By Lemma } 8, \ Y[r,j_i] \geq 0. \text{ Hence, } (c^T - \widetilde{w}^TA)[J] \geq 0. \text{ Given how we chose } \epsilon, \text{ we get } (c^T - \widetilde{w}^TA)[\overline{J}] \geq 0. \text{ Hence, } A^T\widetilde{w} \leq c. \text{ Hence, } \widetilde{w} \text{ is feasible for stdDLP}(A,b,c).}$

Example 2. Let b=0, c=(0,0). Let J be any basis of $\operatorname{stdLP}(A,b,c)$ (|J|=1). Let $\widehat{x}:=\operatorname{solve}(J)$ and $\widehat{w}:=\operatorname{dualSolve}(J)$. $\overline{b}=B^{-1}b=0$, so $\widehat{x}=(0,0)$, which is feasible for $\operatorname{stdLP}(A,b,c)$. $\widehat{w}^T=c[J]^TB^{-1}=0$, so $\widehat{w}=0$. $c-A^T\widehat{w}=(0,0)$, so \widehat{w} is feasible for $\operatorname{stdDLP}(A,b,c)$. Hence, J is primal feasible and dual feasible. Since $\overline{b}=0$, J is primal degenerate. Since $(c-A^T\widehat{w})[J]=0$, J is dual degenerate.

Let P and Q be the set of feasible solutions to the primal and dual LPs, respectively. Since the objective function is 0 for both LPs, unique primal optimal solution exists iff $P = \{(0,0)\}$, and unique dual optimal solution exists iff $Q = \{0\}$.

- If A = [1, 1], then $P = \{(0, 0)\}$ and $Q = (-\infty, 0]$.
- If A = [1, -1], then $P = \{(x, x) : x \ge 0\}$ and $Q = \{0\}$.
- If A = [1, 0], then $P = \{(0, y) : y \ge 0\}$ and $Q = (-\infty, 0]$.

Table 1: Unique primal optimum?

	dual degen	dual non-degen
primal degen	depends	yes
primal non-degen	no	yes

Table 2: Unique dual optimum?

	dual degen	dual non-degen
primal degen	depends	no
primal non-degen	yes	yes